本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 7701 | 2025-10-06 |
Antimicrobial Peptides Design Using Deep Learning and Rational Modifications: Activity in Bacteria, Candida albicans, and Cancer Cells
2025-Jul-11, Current microbiology
IF:2.3Q3
DOI:10.1007/s00284-025-04346-3
PMID:40643674
|
研究论文 | 本研究利用深度学习和理性修饰设计抗菌肽,并评估其在细菌、白色念珠菌和癌细胞中的活性 | 结合两种深度学习算法生成抗菌肽,并通过生物信息学和AI工具进行理性修饰优化 | 仅对12种合成肽进行了体外测试,样本规模有限 | 开发具有高抗菌活性和生物安全性的新型抗菌肽 | 抗菌肽及其对细菌、白色念珠菌和癌细胞的抑制作用 | 机器学习 | 细菌感染,真菌感染,乳腺癌 | 深度学习,生物信息学分析,体外测试 | 深度学习算法 | 肽序列数据,生物活性数据 | 26个计算机生成的合成肽,其中12个进行体外测试 | NA | NA | 最小抑菌浓度(MIC),半数抑制浓度(IC) | NA |
| 7702 | 2025-10-06 |
3BTRON: A Blood-Brain Barrier Recognition Network
2025-Jul-04, Communications biology
IF:5.2Q1
DOI:10.1038/s42003-025-08453-6
PMID:40615521
|
研究论文 | 提出一种名为3BTRON的深度学习框架,用于自动分析血脑屏障的电子显微镜图像 | 首次开发专门用于血脑屏障结构分析的深度学习网络,能够通过图像特征识别年龄相关的血脑屏障变化 | 模型仅在359个小鼠样本上训练和验证,尚未在人类数据或更大样本上测试 | 开发自动化工具分析血脑屏障在衰老过程中的结构变化 | 年轻和年老小鼠的血脑屏障电子显微镜图像 | 数字病理 | 老年疾病 | 电子显微镜 | 深度学习 | 图像 | 359个小鼠脑部样本 | NA | 3BTRON | 灵敏度, 特异度 | NA |
| 7703 | 2025-10-06 |
Machine Learning for Predicting Critical Events Among Hospitalized Children
2025-05-01, JAMA network open
IF:10.5Q1
|
研究论文 | 开发一种机器学习模型用于早期检测住院儿童的病情恶化,实现全院统一风险评估 | 创建了首个覆盖医院所有科室的统一风险评估模型,突破了传统分科室评估的局限性 | 回顾性研究设计,需要在更多医疗机构进行前瞻性验证 | 开发早期检测住院儿童病情恶化的机器学习模型 | 3家三级医院住院的18岁以下儿童患者 | 机器学习 | 儿科疾病 | NA | XGBoost, 深度学习模型 | 临床数据(年龄、生命体征、实验室结果、合并症等) | 135,621名患者 | XGBoost | 极端梯度提升机, 深度学习模型 | C统计量, 灵敏度, 需警示人数 | NA |
| 7704 | 2025-10-06 |
Artificial intelligence for detection and characterization of focal hepatic lesions: a review
2025-04, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04597-x
PMID:39369107
|
综述 | 本文综述了基于人工智能的算法在CT和MRI图像中检测和表征局灶性肝脏病变的诊断能力 | 系统评估了AI算法在肝脏病变检测和分类中的应用潜力,特别关注良恶性病变的区分 | 需要扩展数据集、提高模型可解释性并在更广泛的临床环境中验证AI工具 | 评估人工智能在局灶性肝脏病变检测和表征中的诊断能力 | 局灶性肝脏病变(FLL) | 计算机视觉 | 肝脏疾病 | CT, MRI | CNN | 医学影像 | 45项相关研究(2010年1月至2024年4月) | NA | 卷积神经网络 | 准确率, 灵敏度, 特异性, AUC | NA |
| 7705 | 2025-10-06 |
Gait Video-Based Prediction of Severity of Cerebellar Ataxia Using Deep Neural Networks
2025-Apr, Movement disorders : official journal of the Movement Disorder Society
IF:7.4Q1
DOI:10.1002/mds.30113
PMID:39840857
|
研究论文 | 本研究开发了一种基于步态视频和深度学习模型预测小脑性共济失调严重程度的方法 | 首次将姿态估计算法应用于步态视频来预测小脑性共济失调的严重程度 | 研究样本量较小(66名患者),仅针对退行性小脑疾病患者 | 评估姿态估计算法是否能通过步态视频预测小脑性共济失调的严重程度 | 66名退行性小脑疾病患者 | 计算机视觉 | 小脑性共济失调 | 姿态估计算法,视频分析 | 深度学习模型 | 视频 | 66名患者 | NA | NA | 均方根误差,决定系数 | NA |
| 7706 | 2025-10-06 |
Increase Docking Score Screening Power by Simple Fusion With CNNscore
2025-Mar-05, Journal of computational chemistry
IF:3.4Q2
DOI:10.1002/jcc.70060
PMID:39981784
|
研究论文 | 提出一种通过将传统分子对接评分与CNN评分简单融合来提高虚拟筛选效能的新策略 | 首次将GNINA的卷积神经网络评分与传统Watvina对接评分通过乘法融合,显著提升了虚拟筛选能力 | 方法仅在特定靶点TYK2上验证,需要更多靶点验证通用性 | 提高结构基虚拟筛选中的分子对接评分函数的筛选能力 | 蛋白质-配体相互作用 | 机器学习 | NA | 分子对接,虚拟筛选 | CNN | 分子结构数据 | 近120亿个分子 | GNINA | 卷积神经网络 | 筛选效能,IC50值 | NA |
| 7707 | 2025-10-06 |
Toward Identification of Markers for Brain-Derived Extracellular Vesicles in Cerebrospinal Fluid: A Large-Scale, Unbiased Analysis Using Proximity Extension Assays
2025-Mar, Journal of extracellular vesicles
IF:15.5Q1
DOI:10.1002/jev2.70052
PMID:40098346
|
研究论文 | 通过大规模无偏蛋白质组学分析识别脑源性细胞外囊泡在脑脊液中的特异性标志物 | 首次在脑脊液中系统筛选5416种蛋白质,结合深度学习模型区分跨膜蛋白定位,挑战传统跨膜蛋白均与EV相关的假设 | 仅基于严格的EV分离模式标准进行筛选,需要进一步实验验证候选标志物的特异性 | 识别脑源性细胞外囊泡的特异性捕获标志物和来源验证蛋白 | 人脑脊液中的细胞外囊泡 | 生物信息学 | 神经系统疾病 | 邻近延伸分析,Olink筛查,尺寸排阻色谱 | DeepTMHMM | 蛋白质组数据 | 大规模筛查(5416种蛋白质) | NA | DeepTMHMM | EV分离模式标准 | NA |
| 7708 | 2025-10-06 |
En masse evaluation of RNA guides (EMERGe) for ADARs
2025, Methods in enzymology
DOI:10.1016/bs.mie.2024.11.030
PMID:39870442
|
研究论文 | 介绍一种名为EMERGe的高通量筛选方法,用于全面评估ADARs的RNA引导链并识别能够促进特定腺苷编辑的引导序列 | 开发了EMERGe体外筛选方法,能够克服当前设计原则在难编辑靶点上的局限性,为充分释放ADARs治疗潜力提供新途径 | 在最大化文库覆盖度方面存在挑战,且尚未与机器学习或深度学习模型完全整合 | 开发高通量筛选方法以识别能够促进ADARs特异性编辑的RNA引导链 | ADARs(RNA腺苷脱氨酶)及其RNA引导链 | 生物技术 | NA | NGS, 体外筛选, 高通量筛选 | NA | RNA序列数据 | NA | NA | NA | NA | NA |
| 7709 | 2025-10-06 |
Assessing the cardioprotective effects of exercise in APOE mouse models using deep learning and photon-counting micro-CT
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0320892
PMID:40208877
|
研究论文 | 本研究使用光子计数显微CT和深度学习技术评估运动对不同APOE基因型小鼠心脏结构和功能的影响 | 首次结合光子计数显微CT和3D U-Net深度学习模型评估运动对不同APOE基因型小鼠的心脏保护作用 | 研究仅限于小鼠模型,样本量相对有限,且未探索长期运动效应 | 评估运动对不同APOE基因型小鼠心脏结构和功能的影响 | 140只不同APOE基因型(APOE2、APOE3、APOE4)的小鼠,按性别和运动方案分组 | 数字病理学 | 心血管疾病 | 光子计数计算机断层扫描(PCCT)、脂质体碘纳米颗粒对比剂 | CNN | 显微CT图像 | 140只小鼠 | NA | 3D U-Net | Dice系数 | NA |
| 7710 | 2025-10-06 |
UFPF: A Universal Feature Perception Framework for Microscopic Hyperspectral Images
2025, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
IF:10.8Q1
DOI:10.1109/TIP.2025.3594151
PMID:40763051
|
研究论文 | 提出一种用于显微高光谱图像的通用特征感知框架,通过分层结构和双路径模块提升空间-光谱特征提取能力 | 提出分层角到中心Mamba结构捕获空间邻近关系,采用渐进式中心聚焦策略,设计双路径空间-光谱联合感知模块和Mamba注意力混合对齐机制 | NA | 开发能够充分挖掘高光谱数据临床价值的通用特征提取框架 | 显微高光谱图像 | 计算机视觉 | NA | 高光谱成像 | Mamba, 注意力机制 | 高光谱图像 | NA | NA | 分层角到中心Mamba结构,双路径空间-光谱联合感知模块 | 分类性能,分割性能 | NA |
| 7711 | 2025-10-06 |
Artificial intelligence in nutrition and ageing research - A primer on the benefits
2025-Sep, Maturitas
IF:3.9Q1
DOI:10.1016/j.maturitas.2025.108662
PMID:40645039
|
综述 | 探讨人工智能在营养与老龄化研究中的应用潜力及挑战 | 系统阐述AI技术在老年营养健康领域的创新应用,包括自动化饮食评估和风险预测 | 存在数据质量、伦理问题和模型可解释性等关键挑战 | 促进人工智能在营养与健康老龄化领域的应用与发展 | 老年人群的健康管理与营养干预 | 自然语言处理, 机器学习 | 老年疾病 | 机器学习, 自然语言处理, 深度学习 | NA | 图像, 文本 | 基于大型数据集 | NA | NA | 准确率 | NA |
| 7712 | 2025-10-06 |
Innovations in clinical PET image reconstruction: advances in Bayesian penalized likelihood algorithm and deep learning
2025-Sep, Annals of nuclear medicine
IF:2.5Q2
DOI:10.1007/s12149-025-02088-7
PMID:40681770
|
综述 | 本文综述了临床PET图像重建中贝叶斯惩罚似然算法和深度学习方法的技术原理与临床性能 | 系统总结商业PET系统中集成的BPL算法与新兴深度学习方法的创新融合,特别是混合重建方法uAI HYPER DPR | 未涉及具体实验数据验证,主要基于技术原理和现有商业系统的性能分析 | 总结先进PET图像重建技术原理并促进其临床转化应用 | PET图像重建算法 | 医学影像处理 | NA | PET成像 | CNN | 医学影像 | NA | NA | NA | 图像质量, 定量准确性 | NA |
| 7713 | 2025-10-06 |
Towards trustworthy artificial intelligence in musculoskeletal medicine: A narrative review on uncertainty quantification
2025-Sep, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
DOI:10.1002/ksa.12737
PMID:40719310
|
综述 | 本文综述了不确定性量化在肌肉骨骼医学人工智能中的应用,旨在提升深度学习模型的可信度 | 提出了肌肉骨骼医学中不确定性量化的系统分类方法,并探讨了其在临床转化中的关键作用 | 属于叙述性综述,缺乏系统性评价的严格方法学框架 | 推动可信人工智能在肌肉骨骼医学中的临床应用 | 肌肉骨骼医学影像中的深度学习模型 | 医学影像分析 | 肌肉骨骼疾病 | 不确定性量化方法 | 深度学习模型 | 医学影像 | NA | NA | NA | 不确定性量化指标 | NA |
| 7714 | 2025-10-06 |
Improving Clinically Significant Prostate Cancer Detection with a Multimodal Machine Learning Approach: A Large-Scale Multicenter Study
2025-Sep, Radiology. Imaging cancer
DOI:10.1148/rycan.240507
PMID:40815224
|
研究论文 | 开发并验证了一种结合临床和影像特征的多模态机器学习模型,用于预测临床显著性前列腺癌 | 首次在大规模多中心研究中结合双参数MRI影像组学特征与临床指标构建预测模型,并在前瞻性验证中证明其优于传统PI-RADS评分 | 在一个医疗中心表现较差,对高PI-RADS评分病例敏感性增加可能带来偏倚 | 提高临床显著性前列腺癌的检测准确性 | 前列腺癌患者 | 数字病理 | 前列腺癌 | 双参数MRI, 影像组学分析 | 深度学习, 机器学习 | 医学影像, 临床数据 | 回顾性数据集7157例患者,前瞻性验证集1629例患者 | NA | 自动深度学习分割算法 | AUC, 特异性, 敏感性 | NA |
| 7715 | 2025-10-06 |
A Deep Learning Model for Chemical Shieldings in Molecular Organic Solids Including Anisotropy
2025-Aug-28, The journal of physical chemistry letters
IF:4.8Q1
DOI:10.1021/acs.jpclett.5c01819
PMID:40825152
|
研究论文 | 开发了一种名为ShiftML3的深度学习模型,用于预测分子有机固体中的化学屏蔽,包括各向异性 | 在提高分子固体中化学屏蔽预测精度的同时,还能预测完整的屏蔽张量,其预测精度接近DFT参考计算水平 | NA | 开发更准确、快速的化学屏蔽预测方法,替代计算密集的从头算方法 | 分子有机固体中的核磁共振化学屏蔽 | 机器学习 | NA | 核磁共振(NMR) | 深度学习 | 化学屏蔽数据 | NA | NA | ShiftML3 | 均方根误差(RMSE) | NA |
| 7716 | 2025-10-06 |
Prediction of influenza-like illness incidence using meteorological factors in Kunming : deep learning model study
2025-Aug-16, BMC public health
IF:3.5Q1
DOI:10.1186/s12889-025-23710-3
PMID:40818971
|
研究论文 | 本研究使用深度学习方法结合气象因素预测昆明市流感样病例发病率 | 在LSTM模型中引入核注意力网络(KAN)增强非线性学习能力,并验证气象数据对流感预测的改进效果 | 研究仅基于昆明市数据,时间范围有限(2017-2022年) | 评估气象因素结合LSTM模型提高流感样病例发病率预测准确性的潜力 | 昆明市流感样病例发病率和气象数据 | 机器学习 | 流感 | 皮尔逊相关分析,深度学习 | LSTM | 时间序列数据 | 2017年11月至2022年1月的流感和气象数据 | NA | LSTM, 注意力机制堆叠LSTM, 核注意力网络(KAN) | 平均绝对百分比误差(MAPE) | NA |
| 7717 | 2025-10-06 |
A Large-Scale Image Repository for Automated Pavement Distress Analysis and Degradation Trend Prediction
2025-Aug-14, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05748-5
PMID:40813387
|
研究论文 | 构建了一个包含路面病害识别和长期跟踪的大规模图像数据集,并评估了六种目标检测算法的性能 | 首个包含路面病害长期跟踪的大规模数据集,为动态跟踪监测和道路维护策略优化提供数据支持 | 未明确说明数据采集的地理范围和环境条件限制 | 开发自动化路面病害检测技术和预测退化趋势 | 路面病害图像数据 | 计算机视觉 | NA | 深度学习 | 目标检测算法 | 图像 | 51012张路面病害识别图像 + 8928张长期跟踪图像 | NA | NA | NA | NA |
| 7718 | 2025-10-06 |
A dataset of high-resolution plantar pressures for gait analysis across varying footwear and walking speeds
2025-Aug-13, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05792-1
PMID:40804054
|
研究论文 | 介绍UNB StepUP-P150足底压力数据集,包含150名参与者在不同步行速度和鞋履条件下的高分辨率足底压力数据 | 首次提供大规模公开可用的高分辨率足底压力数据集(4传感器/厘米),包含多种步行速度和鞋履条件 | 数据集仅包含150名参与者,可能无法代表所有人群特征 | 推动基于足底压力的步态分析和识别研究 | 人类步行步态模式 | 生物识别 | NA | 足底压力传感技术 | NA | 压力传感器数据 | 150名参与者,超过200,000个脚步 | NA | NA | NA | NA |
| 7719 | 2025-10-06 |
Ensemble of Handcrafted and Learned Features for Colorectal Cancer Classification
2025-Aug-04, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01633-0
PMID:40760266
|
研究论文 | 提出一种结合手工特征和深度学习特征的集成方法用于结直肠癌分类 | 首次将手工纹理描述符与CNN深度学习特征集成,利用两种特征的互补优势构建更鲁棒的特征空间 | 需要标注数据集且模型可解释性有限 | 开发自动化的结直肠癌分类方法以辅助病理诊断 | 结直肠癌组织病理图像 | 数字病理 | 结直肠癌 | 组织病理分析 | CNN, 集成学习 | 医学图像 | NA | NA | NA | 准确率 | NA |
| 7720 | 2025-10-06 |
Comparison of neural networks for classification of urinary tract dilation from renal ultrasounds: evaluation of agreement with expert categorization
2025-Aug, Pediatric radiology
IF:2.1Q2
DOI:10.1007/s00247-025-06311-5
PMID:40613839
|
研究论文 | 本研究开发并评估了不同深度学习模型在婴儿肾脏超声图像中自动分类尿路扩张的能力 | 首次系统比较多种深度学习模型在婴儿尿路扩张分类任务中的表现,并评估其与专家分类的一致性 | 研究样本量相对有限,仅包含3个月以下婴儿的肾脏超声数据 | 开发自动化的尿路扩张分类系统以简化肾脏超声的临床解读 | 婴儿肾脏超声图像 | 计算机视觉 | 尿路扩张 | 超声成像 | 深度学习模型 | 图像 | 492张右侧肾脏超声和487张左侧肾脏超声,来自3个月以下的婴儿 | NA | NA | 准确率, 加权kappa分数 | NA |