本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8481 | 2025-05-23 |
Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study
2025-Feb-28, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00845-5
PMID:40022261
|
研究论文 | 本研究通过结合放射组学和深度学习特征构建融合模型,用于脑膜瘤窦侵犯的术前精确诊断 | 首次构建了结合放射组学和多种深度学习特征(VGG、ResNet、DenseNet)的融合模型,并在多中心数据集中验证了其优越的诊断性能 | 研究为回顾性设计,需要前瞻性研究进一步验证模型的临床适用性 | 开发脑膜瘤窦侵犯的术前精确诊断方法 | 601例经手术病理证实的脑膜瘤患者 | 数字病理 | 脑膜瘤 | MRI影像分析 | 随机森林(RF)、VGG、ResNet、DenseNet | 医学影像 | 601例患者(训练集、内部验证集和独立外部验证集) |
8482 | 2025-05-23 |
Endoscapes, a critical view of safety and surgical scene segmentation dataset for laparoscopic cholecystectomy
2025-Feb-25, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04642-4
PMID:40000637
|
research paper | 介绍Endoscapes2023数据集,用于腹腔镜胆囊切除术中的安全关键视图和手术场景分割 | 发布了一个包含201个腹腔镜胆囊切除术视频的数据集,带有手术器械和肝胆囊解剖的分割掩码,以及由三位训练有素的外科医生根据公开协议评估的安全关键视图标准 | NA | 支持深度学习模型在腹腔镜胆囊切除术中的视觉任务,如评估安全关键视图,以提高手术安全性和效率 | 腹腔镜胆囊切除术视频 | digital pathology | NA | deep learning | NA | video | 201个腹腔镜胆囊切除术视频 |
8483 | 2025-05-23 |
A review of convolutional neural network based methods for medical image classification
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109507
PMID:39631108
|
review | 本文系统回顾了基于CNN的医学图像分类方法,分析了149篇最新重要论文,并深入探讨了相关技术及其在提高分类准确性和效率中的作用 | 系统性地组织和分析了CNN在医学图像分类领域的发展、主要技术及公共数据集,并指出了未来研究方向 | 尽管CNN在医学图像分类中表现出色,但临床应用仍面临困难 | 回顾和分析基于CNN的医学图像分类方法,促进深度学习在临床实践和智能医疗系统中的成功整合 | 医学图像分类方法 | digital pathology | NA | CNN | CNN | image | 149篇论文 |
8484 | 2025-05-23 |
Enhancing Domain Diversity of Transfer Learning-Based SSVEP-BCIs by the Reconstruction of Channel Correlation
2025-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3458389
PMID:39255081
|
研究论文 | 本研究提出了一种名为通道相关性重建(RCC)的数据增强方法,用于优化基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中迁移学习的源域数据利用 | 通过概率混合源域协方差矩阵的特征向量矩阵来重建训练样本,操纵通道相关性以隐式创建新的合成域,从而增加源域多样性 | NA | 提高SSVEP-BCI系统中迁移学习的性能 | 稳态视觉诱发电位(SSVEP)脑机接口系统 | 脑机接口 | NA | 迁移学习(预训练和微调) | 深度学习模型 | 脑电信号数据 | NA |
8485 | 2025-05-23 |
A Deep and Interpretable Learning Approach for Long-Term ECG Clinical Noise Classification
2025-01, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3454545
PMID:39231059
|
research paper | 本研究探讨了深度学习模型在长期监测心电图中临床噪声分类的应用,并设计了可解释的架构 | 结合深度学习和可解释系统,提高了临床噪声分类的性能,并为决策过程提供定性解释 | 需避免患者内过拟合,且性能仍有提升空间 | 提高长期监测心电图中临床噪声分类的准确性和可解释性 | 长期监测心电图中的临床噪声 | machine learning | cardiovascular disease | 深度学习 | CNN, Autoencoder | ECG信号 | NA |
8486 | 2025-05-23 |
Hybrid deep learning model for accurate and efficient android malware detection using DBN-GRU
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0310230
PMID:40388500
|
research paper | 本研究提出了一种混合深度学习模型(DBN-GRU),用于提高Android恶意软件检测的准确性和效率 | 结合了Deep Belief Networks(DBN)进行静态分析和Gated Recurrent Units(GRU)进行动态行为建模,以增强恶意软件检测能力 | 未提及模型在未知或新型恶意软件变种上的表现 | 提高Android恶意软件检测的准确性和效率 | Android应用程序(APKs) | machine learning | NA | DBN, GRU | DBN-GRU | 静态特征(权限、API调用、意图过滤器)和动态特征(系统调用、网络活动、进程间通信) | 129,013个应用程序(5,560个恶意软件和123,453个良性应用) |
8487 | 2025-05-23 |
Determining resources and capabilities in complex context: A decision-making model for banks
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0323735
PMID:40392866
|
研究论文 | 本研究旨在开发一个决策模型,用于在复杂环境中确定银行的资源和能力 | 提出了一个适用于复杂环境下资源和能力确定的决策模型,整合了模糊偏好判断、深度学习分析和成功率预测 | 研究样本仅限于印度尼西亚国有银行,可能限制模型的普适性 | 开发一个决策模型,帮助银行在复杂环境中确定资源和能力 | 印度尼西亚国有银行(SOB) | 决策科学 | NA | 定性方法、案例研究策略和溯因方法 | 深度学习分析(预测分析) | NA | 印度尼西亚国有银行 |
8488 | 2025-05-23 |
Deep learning approaches for quantitative and qualitative assessment of cervical vertebral maturation staging systems
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0323776
PMID:40392884
|
研究论文 | 研究探讨了人工智能在颈椎成熟度(CVM)分期中的潜力,开发并比较了基于AI的定性CVM和定量QCVM方法 | 提出了基于AI的定量QCVM方法,相比定性方法展现出更高的准确性和一致性 | 定性CVM方法的分类准确率为71.11%,相对较低 | 评估AI在颈椎成熟度分期中的性能 | 颈椎成熟度分期系统 | 计算机视觉 | NA | 深度学习 | AI模型 | 图像 | 3600张侧位头影测量图像,来自6个医疗中心 |
8489 | 2025-05-23 |
SwinFishNet: A Swin Transformer-based approach for automatic fish species classification using transfer learning
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0322711
PMID:40392913
|
research paper | 本文提出了一种基于Swin Transformer的自动鱼类物种分类方法SwinFishNet,通过迁移学习在三个不同的数据集上实现了高准确率 | 利用Swin Transformer模型在计算机视觉任务中的卓越性能,提出了一种创新的鱼类物种分类方法 | NA | 提高鱼类物种分类的准确性,以促进可持续性、食品安全和市场效率 | 鱼类物种 | computer vision | NA | transfer learning | Swin Transformer | image | 三个数据集:12类的BD-Freshwater-Fish数据集、10类的SmallFishBD数据集和20类的FishSpecies数据集 |
8490 | 2025-05-23 |
Assessing response in endoscopy images of esophageal cancer treated with total neoadjuvant therapy via hybrid-architecture ensemble deep learning
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1590448
PMID:40395323
|
研究论文 | 通过混合架构集成深度学习评估食管癌全新辅助治疗后的内镜图像反应 | 提出了EC-HAENet,一种混合架构集成深度学习模型,用于准确评估食管癌患者在全新辅助治疗后的反应 | 数据集仅来自单一医疗机构,可能影响模型的泛化能力 | 开发更准确的人工智能模型,评估食管癌患者在全新辅助治疗后的反应 | 食管癌患者的内镜图像 | 数字病理 | 食管癌 | 深度学习 | EC-HAENet(混合架构集成深度学习模型) | 图像 | 300名食管癌患者的7,359张内镜图像 |
8491 | 2025-05-23 |
Leveraging spatial dependencies and multi-scale features for automated knee injury detection on MRI diagnosis
2025, Frontiers in bioengineering and biotechnology
IF:4.3Q2
DOI:10.3389/fbioe.2025.1590962
PMID:40395675
|
研究论文 | 本研究开发并评估了一种基于深度学习的模型KneeXNet,用于膝关节损伤的MRI诊断 | 利用图卷积网络(GCNs)捕捉膝关节MRI扫描中的空间依赖性和多尺度特征,并采用对比学习方案增强模型的判别力和鲁棒性 | 研究仅使用了MRNet数据集,样本量为1,370名患者,可能限制了模型的泛化能力 | 为临床医生提供一种高效可靠的膝关节疾病诊断工具,特别是前交叉韧带(ACL)撕裂的诊断 | 膝关节MRI扫描数据 | 数字病理学 | 膝关节损伤 | MRI | GCN | 图像 | 1,370名患者的膝关节MRI扫描 |
8492 | 2025-05-23 |
Transfer Learning and Multi-Feature Fusion-Based Deep Learning Model for Idiopathic Macular Hole Diagnosis and Grading from Optical Coherence Tomography Images
2025, Clinical ophthalmology (Auckland, N.Z.)
DOI:10.2147/OPTH.S521558
PMID:40396157
|
research paper | 本研究开发了一种基于迁移学习和多特征融合的深度学习模型,用于从光学相干断层扫描(OCT)图像中诊断和分级特发性黄斑裂孔 | 结合了迁移学习和多特征融合技术,提高了诊断和分级的准确性 | 研究为单中心回顾性研究,样本量相对较小,需要更多临床验证 | 评估深度学习系统在特发性黄斑裂孔诊断、分级和预测中的作用 | 特发性黄斑裂孔患者的OCT图像 | digital pathology | ophthalmic disease | OCT | Resnet101, fusion model | image | 229张OCT图像 |
8493 | 2025-05-22 |
Deep learning-based detection of bacterial swarm motion using a single image
2025-Dec, Gut microbes
IF:12.2Q1
DOI:10.1080/19490976.2025.2505115
PMID:40366861
|
research paper | 开发了一种基于深度学习的细菌集群运动检测方法,仅需单张模糊图像即可快速自主预测细菌集群运动概率 | 提出了一种新型深度学习方法,能够快速、客观地定量评估细菌集群运动概率,适用于高通量环境 | 方法虽然展示了良好的性能,但仍需在更多细菌种类上进行验证以证明其广泛适用性 | 开发一种快速、自主的细菌集群运动检测方法,以克服传统方法的局限性 | 细菌的集群运动和游泳运动 | computer vision | inflammatory bowel diseases (IBD), urinary tract infections (UTI) | deep learning | CNN | image | SM3, DB10, H6细菌样本 |
8494 | 2025-05-22 |
Current Status, Hotspots, and Prospects of Artificial Intelligence in Ophthalmology: A Bibliometric Analysis (2003-2023)
2025-Jun, Ophthalmic epidemiology
IF:1.7Q3
DOI:10.1080/09286586.2024.2373956
PMID:39146462
|
综述 | 本文通过文献计量学方法分析了2003-2023年间人工智能在眼科领域的研究现状、热点及未来趋势 | 采用VOSviewer、CiteSpace和R包Bibliometrix进行文献计量分析,系统梳理了AI在眼科领域的发展脉络和研究热点 | 仅基于Web of Science数据库的文献,可能未涵盖所有相关研究;未深入探讨技术、监管和伦理等具体挑战 | 总结人工智能在眼科领域的研究现状并展望未来发展方向 | 3377篇来自98个国家4035个机构的眼科AI研究文献 | 数字病理 | 眼科疾病 | 文献计量分析 | GAN, ChatGPT | 文献数据 | 3377篇文献,涉及1345位研究人员 |
8495 | 2025-05-22 |
DRBP-EDP: classification of DNA-binding proteins and RNA-binding proteins using ESM-2 and dual-path neural network
2025-Jun, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqaf058
PMID:40391089
|
研究论文 | 本研究提出了一种名为DRBP-EDP的分阶段分类方法,结合ESM-2和双路径神经网络,用于分类DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs) | 整合ESM-2与双路径神经网络进行蛋白质分类,并设计了高质量数据集构建方法 | 未明确提及具体限制 | 开发高效准确的DNA结合蛋白和RNA结合蛋白分类方法 | DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs) | 生物信息学 | NA | 深度学习 | 双路径神经网络 | 蛋白质序列数据 | 未明确提及具体样本数量 |
8496 | 2025-05-22 |
An Ultrasound Image-Based Deep Learning Radiomics Nomogram for Differentiating Between Benign and Malignant Indeterminate Cytology (Bethesda III) Thyroid Nodules: A Retrospective Study
2025-May-21, Journal of clinical ultrasound : JCU
IF:1.2Q3
DOI:10.1002/jcu.24058
PMID:40396203
|
研究论文 | 开发并验证基于术前超声图像和临床特征的深度学习放射组学列线图(DLRN),用于预测细胞学不确定(Bethesda III)甲状腺结节的恶性程度 | 整合了从预训练Resnet34网络提取的512个DTL特征、超声放射组学特征和临床特征,构建了一个综合诊断模型 | 研究为回顾性设计,样本量相对较小(训练集155例,内部验证集39例,外部验证集80例) | 区分细胞学不确定(Bethesda III)甲状腺结节的良恶性 | 194例经手术确诊的细胞学不确定(Bethesda III)甲状腺结节患者 | 数字病理 | 甲状腺结节 | 深度学习放射组学 | Resnet34 | 超声图像 | 训练集155例,内部验证集39例,外部验证集80例 |
8497 | 2025-05-22 |
Validation of a deep learning model for the automated detection and quantification of cystoid macular oedema on optical coherence tomography in patients with retinitis pigmentosa
2025-May-21, Acta ophthalmologica
IF:3.0Q1
DOI:10.1111/aos.17518
PMID:40396533
|
research paper | 该研究验证了一种基于深度学习的模型,用于自动检测和量化视网膜色素变性患者光学相干断层扫描中的囊样黄斑水肿 | 开发并验证了一种基于nnU-Net架构的深度学习模型,用于自动检测和量化囊样黄斑水肿,其性能与人类评分者相当 | 研究样本量相对较小,仅使用了112个OCT体积进行训练和验证,外部测试集仅包含37个SD-OCT扫描 | 验证深度学习模型在自动检测和量化视网膜色素变性患者囊样黄斑水肿方面的准确性和效率 | 视网膜色素变性患者的囊样黄斑水肿 | digital pathology | retinitis pigmentosa | spectral-domain optical coherence tomography (SD-OCT) | nnU-Net | image | 112个OCT体积(70个用于训练,42个用于验证)和37个SD-OCT扫描用于外部测试 |
8498 | 2025-05-22 |
Systematic review on the impact of deep learning-driven worklist triage on radiology workflow and clinical outcomes
2025-May-21, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11674-2
PMID:40397031
|
系统综述 | 本文系统综述了基于深度学习的放射科工作列表分诊对工作流程和临床结果的影响 | 评估了深度学习分诊系统在不同临床环境中对报告周转时间和患者预后的影响,并比较了不同集成模式的效率差异 | 需要进一步研究和可靠指标来提供关于假阴性检查和多条件优先排序的具体建议 | 评估基于深度学习的工作列表优化对诊断影像分诊的影响 | 放射科工作流程和患者临床结果 | 医学影像分析 | 肺栓塞、中风、颅内出血和胸部疾病 | 深度学习 | DL | 医学影像 | 38项研究,涉及138,423张影像 |
8499 | 2025-05-22 |
Challenges in Using Deep Neural Networks Across Multiple Readers in Delineating Prostate Gland Anatomy
2025-May-20, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01504-8
PMID:40392414
|
research paper | 本研究探讨了在多位临床专家注释的前列腺腺体解剖结构MRI图像上使用深度神经网络(DNN)进行分割时面临的读者间变异性问题,并提出量化DNN性能差异及训练策略 | 通过结合不同专家的注释数据训练3D U-Net模型,提高了模型在不同读者间的可重复性,并分析了腺体体积对模型性能的影响 | 小腺体尺寸的分割性能相对较差,Dice系数降至0.8左右 | 解决医学图像分割中深度神经网络面临的读者间变异性问题,提升模型泛化能力 | 前列腺腺体的MRI图像分割 | digital pathology | prostate cancer | MRI (T2-weighted) | 3D U-Net | image | R#1的342个样本和R#2的204个样本,训练时使用了R#1的100个样本和R#2的150个样本 |
8500 | 2025-05-22 |
XVir: A Transformer-Based Architecture for Identifying Viral Reads from Cancer Samples
2025-May-20, Journal of computational biology : a journal of computational molecular cell biology
IF:1.4Q2
DOI:10.1089/cmb.2025.0075
PMID:40392695
|
研究论文 | 本文介绍了一种基于Transformer的深度学习架构XVir,用于从癌症样本中可靠地识别病毒DNA | XVir采用Transformer架构,能够高效识别人类肿瘤中的病毒DNA,并在多样化的病毒群体中保持高准确性,训练速度显著快于其他大型深度学习分类器 | 未提及具体样本量或实际临床应用验证 | 开发一种计算工具来识别与癌症相关的病毒DNA | 人类肿瘤中的病毒DNA | 数字病理学 | 癌症 | DNA测序 | Transformer | DNA序列数据 | NA |