深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 10416 篇文献,本页显示第 10121 - 10140 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
10121 2025-01-06
UNet-based multi-organ segmentation in photon counting CT using virtual monoenergetic images
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于UNet的多器官分割方法,利用光子计数CT中的虚拟单能图像来有效利用光谱信息 提出了一种新的多器官分割方法,结合虚拟单能图像和深度学习技术,提高了光子计数CT中的分割性能 方法在能量箱数量较少时表现较好,但在其他情况下可能需要进一步优化 提高光子计数CT中多器官分割的准确性和稳定性 肝脏、胰腺和脾脏 计算机视觉 NA 光子计数CT、虚拟单能图像、深度学习 3D UNet, Swin UNETR 图像 55名受试者的腹部模型
10122 2025-01-06
Building a pelvic organ prolapse diagnostic model using vision transformer on multi-sequence MRI
2025-Jan, Medical physics IF:3.2Q1
研究论文 本研究旨在开发一种基于深度学习的多标签分级模型,利用应力磁共振成像(MRI)对女性骨盆中三个器官的脱垂程度进行分类,并提供可解释的结果分析 使用视觉变换器(Vision Transformer)架构设计了一个专门用于骨盆底MRI的特征提取模块,并采用了标签掩码训练策略和预训练方法以增强模型收敛性 研究结果依赖于特定数据集,可能无法直接推广到其他数据集或临床环境 开发一个多标签分级模型,用于分类女性骨盆中三个器官的脱垂程度 女性骨盆中的子宫、膀胱和直肠 计算机视觉 盆腔器官脱垂 应力磁共振成像(MRI) Vision Transformer 图像 662名受试者(训练集464名,验证集98名,测试集100名)
10123 2025-01-06
Diffusion probabilistic priors for zero-shot low-dose CT image denoising
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于扩散模型的零样本低剂量CT图像去噪方法,仅需正常剂量CT图像进行训练 提出了一种仅需正常剂量CT图像进行训练的零样本去噪方法,解决了现有方法需要大量低剂量CT图像或特殊设计数据采集过程的限制 NA 解决低剂量CT图像去噪问题,特别是在临床环境中难以获取低剂量和正常剂量CT图像对的情况下 低剂量CT图像 医学图像计算 NA 扩散模型 扩散模型 图像 不同区域和剂量水平的低剂量CT数据集
10124 2025-01-06
Interpret Gaussian Process Models by Using Integrated Gradients
2025-Jan, Molecular informatics IF:2.8Q2
研究论文 本文提出了一种通过集成梯度方法解释高斯过程回归模型的新方法,以评估解释变量对预测的重要性 将高斯过程回归模型与集成梯度方法结合,提供预测不确定性的详细分解,量化每个特征的不确定性 由于高斯过程回归的非参数性质,解释其预测标准偏差仍然具有挑战性 提高高斯过程回归模型的解释性,特别是在预测标准偏差方面 高斯过程回归模型及其预测结果 机器学习 NA 集成梯度方法 高斯过程回归模型 NA NA
10125 2025-01-06
An improved low-rank plus sparse unrolling network method for dynamic magnetic resonance imaging
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种改进的低秩加稀疏展开网络方法,用于动态磁共振成像(MRI)重建,通过引入时间相关性建模来提高重建质量和减少参数冗余 提出了一种结合低秩核心矩阵和卷积长短期记忆(ConvLSTM)单元的新型展开网络方法,用于动态MRI重建中的时间相关性建模 未提及具体局限性 寻找适合的张量处理方法和深度学习模型,以实现更好的重建结果和更小的网络规模 动态磁共振成像(MRI)重建 计算机视觉 NA 动态磁共振成像(MRI) 卷积长短期记忆(ConvLSTM) 图像 AMRG Cardiac MRI数据集
10126 2025-01-06
Large-scale multi-center CT and MRI segmentation of pancreas with deep learning
2025-Jan, Medical image analysis IF:10.7Q1
研究论文 本文介绍了一种名为PanSegNet的新方法,用于大规模多中心的CT和MRI胰腺分割,结合了nnUNet和Transformer网络的优点,并引入了一种新的线性注意力模块以实现体积计算 提出了PanSegNet方法,结合了nnUNet和Transformer网络的优点,并引入了一种新的线性注意力模块,提高了胰腺分割的准确性 研究主要依赖于回顾性数据,且MRI数据的公开可用性有限,可能影响方法的广泛验证和应用 开发一种自动化胰腺分割方法,用于胰腺疾病的诊断和随访 胰腺 数字病理学 胰腺疾病 深度学习 nnUNet, Transformer CT, MRI 767次MRI扫描(来自499名参与者)和1,350次CT扫描
10127 2025-01-06
An attention mechanism-based lightweight UNet for musculoskeletal ultrasound image segmentation
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种基于注意力机制的轻量级UNet模型(AML-UNet),用于肌肉骨骼超声(MSKUS)图像分割,旨在提高分割效率、准确性和模型轻量化 设计了通道重建和空间注意力模块以抑制冗余特征的传输,并开发了多尺度聚合模块替代U-Net的跳跃连接架构,同时引入深度监督逐步细化预测掩码 未提及模型在更大规模数据集上的泛化能力,也未讨论其在临床环境中的实际应用效果 设计一种参数更少、计算复杂度更低且分割精度更高的MSKUS图像分割方法 肌肉骨骼超声(MSKUS)图像 计算机视觉 肌肉骨骼疾病 深度学习 AML-UNet(基于注意力机制的轻量级UNet) 图像 两个MSKUS 2D图像分割数据集,分别包含3917张和1534张图像
10128 2025-01-06
Predicting learning achievement using ensemble learning with result explanation
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种基于集成学习技术的学习成就预测框架,旨在解决高辍学率问题 结合多种机器学习算法的优势设计了一个鲁棒的模型,并使用可解释性分析(SHAP)来阐明预测结果 现有预测模型存在偏差,且当前机器学习方法缺乏可解释性,限制了其在教育中的实际应用 预测学习成就以支持学生个性化干预 学习成就预测 机器学习 NA 集成学习 集成模型(包括六个基础学习器和逻辑回归作为元学习器) 教育数据 XuetangX数据集
10129 2025-01-06
Exploring happiness factors with explainable ensemble learning in a global pandemic
2025, PloS one IF:2.9Q1
研究论文 本文使用机器学习和深度学习算法预测幸福指数,并探讨了COVID-19大流行对幸福特征的影响 设计了两种集成模型(Blending RGMLL和Stacking LRGR),并利用可解释人工智能技术揭示幸福指数的变化和变量重要性 未来研究将探索更先进的方法,并包括其他相关特征和实时监测以获得更全面的见解 预测幸福指数并探讨COVID-19大流行对幸福特征的影响 156个国家的幸福指数数据 机器学习 NA 机器学习(ML)、深度学习(DL)、集成学习 Ridge Regression (RR)、Gradient Boosting (GB)、Multilayer Perceptron (MLP)、Long Short-Term Memory (LSTM)、Linear Regression (LR)、Random Forest (RF) 数值数据 156个国家从2018年到2023年的数据
10130 2025-01-06
An investigation of feature reduction, transferability, and generalization in AWID datasets for secure Wi-Fi networks
2025, PloS one IF:2.9Q1
研究论文 本研究提出了一种使用AWID 3数据集进行网络攻击检测的新方法,通过分析保留特征的可转移性,创建了一个轻量级且成本效益高的模型 提出了一种新的方法,使用AWID 3数据集进行网络攻击检测,并评估了特征的可转移性和泛化能力 现有研究在Wi-Fi攻击检测中忽视了现代流量和攻击场景,如密钥重装或未经授权的解密攻击 研究目的是提高无线网络中的安全性和隐私保护,特别是在管理帧的认证和关联帧方面 AWID 3数据集中的网络流量数据 机器学习 NA 决策树与递归特征消除方法 DT, CNN 网络流量数据 AWID 3数据集
10131 2025-01-06
Artificial intelligence in dentistry: Assessing the informational quality of YouTube videos
2025, PloS one IF:2.9Q1
研究论文 本研究评估了YouTube上关于牙科人工智能(AI)信息的质量 首次对YouTube上牙科AI相关视频的信息质量进行了系统评估 研究仅限于YouTube平台,未涵盖其他社交媒体或信息来源 评估YouTube上牙科AI相关视频的信息质量和可靠性 YouTube上关于牙科AI的视频 自然语言处理 NA DISCERN评分、修改后的全球质量评分(mGQS)、美国医学会杂志(JAMA)评分 NA 视频 91个YouTube视频
10132 2025-01-06
Incident duration prediction through integration of uncertainty and risk factor evaluation: A San Francisco incidents case study
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种综合不确定性和风险因素评估的框架,用于预测交通事故持续时间,并通过旧金山事故数据集进行了案例研究 引入了基于风险优先级数(RPN)概念的'风险'特征,强调了事故地点在事故发生和预测中的重要性,并通过模糊聚类方法改进了事故分类 案例研究仅限于旧金山地区,可能无法完全推广到其他地区 优化交通管理中的资源分配和减少交通中断 交通事故持续时间预测 机器学习 NA 模糊聚类方法,多准则决策(MCDM)过程 传统机器学习(ML)和深度学习(DL)模型 交通事故数据 旧金山事故数据集
10133 2025-01-06
An end-to-end implicit neural representation architecture for medical volume data
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种端到端的架构,用于医疗体积数据的压缩,利用先进的深度学习技术 提出了一种结合下采样、隐式神经表示(INR)和超分辨率(SR)的端到端架构,通过权衡点方法优化各模块性能,实现高压缩率和重建质量的最佳平衡 实验仅在多参数MRI数据上进行,未涉及其他类型的医疗数据 解决医疗体积数据在组织、存储、传输、操作和渲染方面的挑战 医疗体积数据 数字病理 NA 深度学习 隐式神经表示(INR) 体积数据 多参数MRI数据
10134 2025-01-06
Automated CAD system for early detection and classification of pancreatic cancer using deep learning model
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习的自动化计算机辅助诊断系统,用于早期检测和分类胰腺癌 提出了一个四阶段的计算机辅助诊断系统框架,包括预处理、分割、检测和分类阶段,并使用改进的11层AlexNet模型进行分类 未提及样本的具体数量和多样性,可能影响模型的泛化能力 开发一个自动化系统,用于早期检测和分类胰腺癌 胰腺癌的CT扫描图像 计算机视觉 胰腺癌 深度学习 U-Net, AlexNet 图像 NA
10135 2025-01-06
A weak edge estimation based multi-task neural network for OCT segmentation
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于弱边缘估计的多任务神经网络(MTAMNP),用于光学相干断层扫描(OCT)图像的分割 引入了多任务注意力机制网络(MTAMNP),包含分割分支和边界回归分支,利用自适应加权损失函数提高模型对弱边缘细节的保留能力,并提出基于通道注意力的结构化剪枝方法以减少参数数量并防止过拟合 未明确提及具体局限性 解决OCT图像分割中弱边缘敏感性和标注数据不足导致的过拟合问题 光学相干断层扫描(OCT)图像 计算机视觉 眼科疾病 深度学习 多任务注意力机制网络(MTAMNP) 图像 两个公开数据集(HCMS和Duke数据集)
10136 2025-01-06
Automatic tumor segmentation and lymph node metastasis prediction in papillary thyroid carcinoma using ultrasound keyframes
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种全自动深度学习模型(FADLM),用于在甲状腺乳头状癌(PTC)中使用超声关键帧进行自动肿瘤分割和颈部淋巴结转移(LNM)预测 创新点在于整合了Mask R-CNN用于自动甲状腺原发肿瘤分割,并结合ResNet34和贝叶斯策略进行颈部LNM诊断,显著提高了预测性能 研究样本量相对较小,且仅在两所医院进行验证,可能影响模型的泛化能力 建立一种全自动深度学习模型,用于甲状腺乳头状癌的术前颈部淋巴结转移预测 518名甲状腺乳头状癌患者 数字病理 甲状腺癌 超声关键帧分析 Mask R-CNN, ResNet34 超声视频关键帧 518名患者(340名训练集,83名内部测试集,95名外部测试集)
10137 2025-01-06
Diffusion network with spatial channel attention infusion and frequency spatial attention for brain tumor segmentation
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种结合空间通道注意力注入(SCAI)模块和频率空间注意力(FSA)机制的条件扩散网络(SF-Diff),用于精确分割脑肿瘤的整个肿瘤(WT)区域 提出了一个条件扩散网络(SF-Diff),结合了空间通道注意力注入(SCAI)模块和频率空间注意力(FSA)机制,以改进脑肿瘤分割的边界轮廓和准确性 目前的方法主要针对整个肿瘤区域的分割,未来需要进一步扩展到脑肿瘤的三类分割任务 提高脑肿瘤分割的准确性,特别是在边界轮廓和非连续病变区域 脑肿瘤的整个肿瘤(WT)区域 计算机视觉 脑肿瘤 扩散模型 条件扩散网络(SF-Diff) 多模态MRI图像 369例患者数据,来自Multimodal BraTS Challenge 2020(BraTS2020)
10138 2025-01-05
Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification
2025-Dec, Health information science and systems IF:4.7Q1
研究论文 本文提出了一种名为Csec-net的新方法,用于白血病的计算机辅助诊断,通过深度学习特征融合和熵控制的萤火虫特征选择框架实现 提出了一种新的深度学习特征融合策略和熵控制的萤火虫特征选择技术,用于白血病分类 未提及具体局限性 开发和评估深度学习方法以实现计算机辅助的白血病诊断 白血病患者的血液样本图像 计算机视觉 白血病 深度学习 MobileNetV2, EfficientNetB0, ConvNeXt-V2, EfficientNetV2, DarkNet-19, 多类支持向量机 图像 15562张图像,来自四个数据集:ALLID_B1, ALLID_B2, C_NMC 2019, ASH
10139 2025-01-05
DEELE-Rad: exploiting deep radiomics features in deep learning models using COVID-19 chest X-ray images
2025-Dec, Health information science and systems IF:4.7Q1
研究论文 本文提出了一种名为DEELE-Rad的方法,通过深度学习模型提取深度放射组学特征,用于COVID-19胸部X光图像的分类,并提供了可视化的解释以支持决策 结合深度学习和机器学习技术,利用迁移学习从ImageNet中提取深度放射组学特征,并通过自动参数调整和交叉验证策略优化分类器性能 未提及具体的数据集规模或多样性限制,可能影响模型的泛化能力 开发一种基于深度学习的放射组学方法,用于COVID-19胸部X光图像的分类,以辅助医疗决策 COVID-19患者的胸部X光图像 计算机视觉 COVID-19 深度学习、迁移学习 VGG16, ResNet50V2, DenseNet201 图像 未提及具体样本数量
10140 2025-01-05
Throw out an oligopeptide to catch a protein: Deep learning and natural language processing-screened tripeptide PSP promotes Osteolectin-mediated vascularized bone regeneration
2025-Apr, Bioactive materials IF:18.0Q1
研究论文 本文利用深度学习和自然语言处理技术筛选出一种三肽PSP,该肽能够促进血管化骨再生,并通过激活Osteolectin介导的血管-骨通讯来增强骨髓干细胞的成骨分化 结合深度学习和自然语言处理技术,开发了一种新的算法来筛选潜在的促血管生成肽,特别是从262个相关蛋白的内在无序区域中筛选出具有生物活性的三肽PSP 研究主要基于小鼠模型,尚未在人体中进行验证 开发一种更安全、更有效的替代传统细胞因子疗法的方法,以促进血管化骨再生 三肽PSP及其在血管化骨再生中的作用 自然语言处理 骨再生 深度学习(DL)、自然语言处理(NLP) 复合模型(DL和NLP结合) 蛋白质序列数据 262个相关蛋白的内在无序区域
回到顶部