本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1041 | 2025-11-12 |
Supercell-based metasurfaces for arbitrary polarization beam splitting: physics-informed U-Net design with high extinction ratio
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.561950
PMID:41215359
|
研究论文 | 提出一种基于物理信息驱动深度学习的方法,用于设计任意偏振分束的超表面结构 | 将物理信息嵌入改进的U-Net架构,通过分解目标远场图案到正交圆偏振分量来高效恢复相位分布 | NA | 开发高效偏振控制器件设计方法 | 硅纳米柱超表面结构 | 计算光子学 | NA | FDTD模拟 | U-Net | 相位分布数据,远场图案 | NA | NA | 改进的U-Net | MSE, 偏振消光比, 传输效率 | NA |
| 1042 | 2025-11-12 |
Dual deep learning network enables data-efficient two-color single-molecule localization microscopy with colorimetry camera
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.574460
PMID:41215365
|
研究论文 | 开发了一种结合双深度学习网络的CC-DeepSTORM框架,用于提升双色单分子定位显微镜的数据效率 | 提出CC-DeepLoc定位网络和CC-DeepSeparator颜色分离网络的双深度学习框架,显著提升定位精度并大幅降低数据拒绝率 | 研究主要基于模拟和单色实验数据验证,双色实验的全面性能评估有待进一步扩展 | 解决多色单分子定位显微镜技术复杂性和数据效率低下的问题 | 单分子定位显微镜图像数据 | 计算显微镜 | NA | 单分子定位显微镜(SMLM) | 深度学习网络 | 显微镜图像 | NA | 深度学习框架 | CC-DeepLoc, CC-DeepSeparator | Jaccard指数, 定位精度, 串扰率, 数据拒绝率 | NA |
| 1043 | 2025-11-12 |
Research on an atmospheric turbulent channel equalization algorithm using the spatiotemporal feature fusion method
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.573173
PMID:41215432
|
研究论文 | 提出一种基于时空特征融合的深度学习信道均衡算法,用于消除大气湍流信道对无线光通信系统的影响 | 首次将时空特征融合方法应用于大气湍流信道均衡,突破了传统信道均衡的性能瓶颈 | NA | 解决大气湍流引起的信号衰落问题,提高无线光通信系统的传输可靠性 | 大气湍流信道模型和传输信号 | 机器学习 | NA | 深度学习 | CNN | 光强度测量数据 | NA | NA | 时空特征融合网络 | 误码率 | NA |
| 1044 | 2025-11-12 |
Risk stratification of chest pain in the emergency department using artificial intelligence applied to electrocardiograms
2025-Sep-01, Open heart
IF:2.8Q2
DOI:10.1136/openhrt-2025-003343
PMID:40889954
|
研究论文 | 开发了一种基于人工智能的心电图风险分层模型(CP-AI),用于急诊胸痛患者的7天主要心血管事件预测 | 首次将深度学习模型应用于心电图数据,结合临床特征构建全自动风险分层系统,显著优于传统生物标志物模型 | 回顾性研究设计,需要在更多样化人群中验证模型泛化能力 | 改善急诊胸痛患者的风险分层,减少主观评估带来的不一致性 | 急诊胸痛患者 | 医疗人工智能 | 心血管疾病 | 深度学习,心电图分析 | 神经网络分类器 | 心电图,临床数据 | 训练集15,048名患者,外部验证集14,476名患者 | NA | 患者对比学习表示模型 | AUROC, AUPRC | NA |
| 1045 | 2025-11-12 |
Evaluating pedestrian crossing safety: Implementing and evaluating a convolutional neural network model trained on paired aerial and subjective perspective images
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42428
PMID:40028551
|
研究论文 | 本研究通过实现和评估基于配对航拍图像和主观视角图像训练的卷积神经网络模型,自动化评估行人过街设施安全性 | 首次结合航拍图像和街景图像,采用ConvNextV2等先进CNN模型进行行人过街设施安全评估,并利用Mask R-CNN解决传统数据标注难题 | 面临数据不平衡问题,以及能见度和停车距离等复杂变量的分析挑战,需要持续的数据集扩充和方法论改进 | 通过深度学习神经网络自动化评估行人过街设施和环岛的安全性,改善行人安全 | 法国各种城市和乡村环境中的行人过街设施,重点关注九个已识别的风险因素 | 计算机视觉 | NA | 航拍图像和街景图像分析 | CNN | 图像 | 覆盖法国各种城市和农村环境的行人过街设施 | NA | ConvNextV2, ResNet50, ResNext50, Mask R-CNN | NA | NA |
| 1046 | 2025-11-12 |
Data Harmonization with StyleTransfer-GANs: Enhancing Non-Invasive IDH Classification in Brain Tumors
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3049148
PMID:41200077
|
研究论文 | 开发基于风格迁移生成对抗网络的医学影像数据协调方法,提升脑胶质瘤IDH突变分类的准确性和泛化能力 | 首次将StyleTransfer-GAN应用于多中心MRI数据的协调,在保持关键影像特征的同时消除机构间成像协议差异 | 风格迁移参考选择对分类性能敏感,未详细说明具体数据集规模和多样性 | 解决多中心医学影像数据异质性问题,提高深度学习模型在脑肿瘤IDH分类中的泛化能力 | 脑胶质瘤患者的多中心MRI影像数据 | 医学影像分析 | 脑胶质瘤 | MRI,深度学习 | GAN,深度神经网络 | 医学影像 | NA | NA | StyleTransfer-GAN | 准确率,灵敏度,特异性 | NA |
| 1047 | 2025-11-12 |
AllerTrans: a deep learning method for predicting the allergenicity of protein sequences
2025, Biology methods & protocols
IF:2.5Q3
DOI:10.1093/biomethods/bpaf040
PMID:40656558
|
研究论文 | 开发了一种基于深度学习的蛋白质序列过敏性预测方法AllerTrans | 结合两种蛋白质语言模型提取不同特征向量,并通过集成建模技术提升预测性能 | NA | 预测蛋白质序列的过敏性 | 蛋白质序列 | 生物信息学 | 过敏性疾病 | 蛋白质语言模型 | DNN | 蛋白质序列 | NA | NA | 深度神经网络 | 灵敏度,特异性,准确率,AUC | NA |
| 1048 | 2025-11-11 |
Deep learning model for osteoporosis screening on chest CT with low tube voltage
2025-Nov-10, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-09540-2
PMID:41207963
|
研究论文 | 开发基于低管电压胸部CT的深度学习模型用于骨质疏松筛查 | 首次使用100kV低管电压胸部CT图像结合深度学习进行骨质疏松筛查 | 回顾性研究,样本量有限(649例) | 开发骨质疏松筛查的深度学习模型 | 接受低管电压胸部CT和腰椎QCT检查的患者 | 医学影像分析 | 骨质疏松 | 定量计算机断层扫描(QCT) | 深度学习 | CT图像 | 649例患者(训练集518例,测试集131例) | NA | Bone-PSPNet, Ost-ClassNet | 敏感度, AUC | NA |
| 1049 | 2025-11-11 |
Extending convolutional neural networks to detect differences in symmetry in videorasterstereographic back scans with the aim to improve screening for adolescent idiopathic scoliosis
2025-Nov-10, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-09520-6
PMID:41207964
|
研究论文 | 本研究提出两种对称性敏感的卷积神经网络,通过分析视频光栅立体成像背部扫描图像中的对称性差异来改善青少年特发性脊柱侧凸的筛查 | 将卷积神经网络扩展到对称性分析领域,特别开发了基于DeepSymNet的双通道CNN,能够分别分析躯干左右两侧图像并检测不对称性 | 数据集多样性既是优势也是挑战,包含了多种姿势状况,可能混淆AIS特征识别;需要纳入更多轻度病例来提升性能 | 改进青少年特发性脊柱侧凸的筛查方法 | 青少年背部视频光栅立体成像扫描图像 | 计算机视觉 | 青少年特发性脊柱侧凸 | 视频光栅立体成像 | CNN | 图像 | 1444个视频光栅立体成像测量数据(355例AIS患者,306例其他脊柱畸形,783例健康姿势) | NA | VGG16, DeepSymNet | 准确度, 特异性, 敏感性, 阳性预测值 | NA |
| 1050 | 2025-11-11 |
Letter to the editor "Multichannel deep learning for MPR prediction in lung cancer: navigating translational pitfalls between algorithmic excellence and clinical deployment"
2025-Nov-10, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000003962
PMID:41208798
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1051 | 2025-11-11 |
Deep learning predicts EGFR mutation status from histology images in non-small cell lung cancer
2025-Nov-10, Cancer research communications
IF:2.0Q3
DOI:10.1158/2767-9764.CRC-25-0155
PMID:41211715
|
研究论文 | 开发并验证了基于深度学习的Lunit SCOPE基因型预测器,能够从常规H&E组织切片图像预测非小细胞肺癌的EGFR突变状态 | 首次使用超过12,000张全切片图像训练深度学习模型,实现从常规组织学图像预测EGFR突变状态,并在多样化临床环境中验证了模型性能 | 研究主要基于回顾性数据,需要在更多前瞻性临床试验中进一步验证 | 开发人工智能工具以补充分子EGFR突变筛查,提高非小细胞肺癌生物标志物检测率 | 非小细胞肺癌患者的组织切片图像 | 数字病理学 | 肺癌 | 苏木精-伊红染色,全切片扫描 | 深度学习 | 组织病理学图像 | 训练集超过12,000张全切片图像,验证集1,461例,独立测试集599例,多扫描仪测试集2,261例 | NA | Lunit SCOPE Genotype Predictor | AUROC,一致性率 | NA |
| 1052 | 2025-11-11 |
Enhancing Dental Caries Classification with Adversarial Training on Bitewing Radiographs
2025-Nov-10, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01737-7
PMID:41212346
|
研究论文 | 本研究通过将投影梯度下降对抗训练应用于ResNet模型,提升咬翼片X光影像中龋齿分类的准确性和鲁棒性 | 首次将投影梯度下降对抗训练技术应用于龋齿分类任务,通过引入轻微扰动增强数据集,显著提升模型性能 | 仅使用单一类型影像数据(咬翼片X光),未考虑其他影像模态;模型性能仍有提升空间 | 提高基于深度学习的龋齿分类模型的准确性和鲁棒性 | 咬翼片X光影像中的龋齿病变 | 计算机视觉 | 龋齿 | X光影像分析 | CNN | 医学影像 | NA | NA | ResNet-50 | 准确率, 敏感度, 特异性 | NA |
| 1053 | 2025-11-11 |
Longitudinal deep learning models for tracking disease progression in ovarian cancer using PET/CT imaging and clinical reports
2025-Nov-10, Physical and engineering sciences in medicine
IF:2.4Q2
DOI:10.1007/s13246-025-01669-0
PMID:41212383
|
研究论文 | 开发了集成纵向PET/CT影像和临床数据的深度学习框架OvarXNet,用于早期预测卵巢癌复发 | 首次结合纵向PET/CT影像和临床数据,采用3D CNN和双向门控循环单元进行时序分析,显著提升复发预测性能 | 回顾性研究,样本量较小(58例患者),需进一步前瞻性验证 | 早期预测高级别浆液性卵巢癌的疾病进展和复发 | 58例晚期高级别浆液性卵巢癌患者 | 数字病理 | 卵巢癌 | PET/CT成像,临床数据分析 | CNN, BiGRU | 医学影像,临床文本 | 58例患者,1914个增强后的图像集 | NA | 3D CNN, 双向门控循环单元 | AUC, PR-AUC, 校准图 | NA |
| 1054 | 2025-11-11 |
OralSegNet: An Approach to Early Detection of Oral Disease Using Transfer Learning
2025-Nov-09, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.70135
PMID:41207876
|
研究论文 | 提出基于深度学习的口腔疾病早期检测分割系统OralSegNet,使用YOLOv11架构变体从口腔内摄影图像中自动检测和定位口腔疾病 | 首次将YOLOv11架构的三个变体应用于口腔疾病分割任务,采用渐进式数据集增强策略解决类别不平衡问题,并开发了完全客户端响应的Web应用 | 数据集规模相对较小(582张初始图像),模型性能仍有提升空间(mAP@50约0.5),使用免费计算资源可能限制模型复杂度 | 开发自动化口腔疾病检测和定位系统,实现口腔疾病的早期发现 | 口腔内摄影图像中的口腔疾病病变区域 | 计算机视觉 | 口腔疾病 | 深度学习分割 | YOLO | 图像 | 初始582张像素级标注图像,通过数据增强扩展到v2和v3版本 | PyTorch, ONNX Runtime Web | YOLOv11n-seg, YOLOv11s-seg, YOLOv11m-seg | box mAP@50, mask mAP@50 | Google Colab免费版(Intel Xeon CPU, 13GB RAM, T4 GPU 15GB, 120GB存储) |
| 1055 | 2025-11-11 |
ASL 4D MRA Intracranial Vessel Segmentation With Deep Learning U-Nets
2025-Nov-09, Magnetic resonance in medicine
IF:3.0Q2
DOI:10.1002/mrm.70173
PMID:41207868
|
研究论文 | 提出一种基于时空U-Net的网络(4DST),用于ASL非对比增强4D MRA血管分割 | 利用时空信息同时避免内存密集的4D卷积层,实现端到端可训练的时空数据集模型 | 样本量较小(40例),仅针对ASL-based 4D MRA数据 | 改进4D MRA血管分割性能 | 35名健康志愿者和5名动静脉畸形患者的颅内血管 | 医学影像分析 | 脑血管疾病 | ASL-based非对比增强4D MRA | U-Net | 4D MRI图像 | 40例(35健康志愿者+5患者) | NA | 4DST, 2D U-Net, 3D U-Net, BRAVE-Net | Dice-Sørensen系数, 中心线Dice, Hausdorff距离, 精确度, 准确度, 特异性, 灵敏度 | NA |
| 1056 | 2025-11-11 |
RCSB Protein Data Bank: Delivering integrative structures alongside experimental structures and computed structure models
2025-Nov-08, Nucleic acids research
IF:16.6Q1
DOI:10.1093/nar/gkaf1187
PMID:41206752
|
研究论文 | 介绍RCSB蛋白质数据库如何整合提供实验结构、计算结构模型和综合方法结构数据 | 将PDB-IHM系统与PDB统一,首次在RCSB.org网站上同时提供综合方法结构、单方法实验结构和计算结构模型 | NA | 扩展RCSB.org数据库功能,支持综合结构数据的发现、分析和可视化 | 蛋白质等大分子的3D结构数据 | 生物信息学 | NA | 综合/混合方法(IHM)、深度学习、大分子晶体学、3D电子显微镜、核磁共振波谱 | 深度学习模型 | 3D结构数据、计算结构模型 | 超过240,000个实验结构,超过100万个计算结构模型 | NA | NA | NA | NA |
| 1057 | 2025-11-11 |
BERTAVP: an interpretable multi-task learning model for identification and functional prediction of antiviral peptides
2025-Nov-08, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.111282
PMID:41207159
|
研究论文 | 提出一种基于多任务学习的可解释深度学习框架BERTAVP,用于抗病毒肽的识别和功能预测 | 结合BERT和CNN分支提取不同特征,采用多任务学习同时实现抗病毒肽识别和功能活性预测,并通过焦点损失解决数据不平衡问题 | 未明确说明模型在独立验证集上的泛化能力以及计算资源需求 | 开发可解释的抗病毒肽识别和功能预测模型 | 抗病毒肽及其功能活性(8个物种和6个家族) | 自然语言处理, 生物信息学 | 病毒性疾病 | 深度学习, 多任务学习 | BERT, CNN | 肽序列数据 | NA | PyTorch或TensorFlow(基于代码仓库推断) | BERT, CNN | 准确率, 精确率, 召回率, F1分数, AUC | NA |
| 1058 | 2025-11-11 |
Rapid consistent reef surveys with DeepReefMap
2025-Nov-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-20795-z
PMID:41203649
|
研究论文 | 介绍使用DeepReefMap进行快速珊瑚礁调查的创新方法,通过神经网络实现3D语义映射 | 首次在红海进行大规模跨国珊瑚礁调查,开发了基于深度学习的实用3D水下测绘和语义分割系统 | NA | 开发高效、标准化、可扩展且经济的珊瑚礁监测策略 | 红海珊瑚礁生态系统 | 计算机视觉 | NA | 水下摄像技术 | 神经网络 | 视频 | 365个视频样带,来自45个地点,184小时视频素材,200,000个标注多边形 | NA | NA | 鲁棒性评估 | NA |
| 1059 | 2025-11-11 |
A hybrid approach leveraging meta-heuristic and ensemble learning for time-sensitive prediction of pollutant concentrations
2025-Nov-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-23940-w
PMID:41203671
|
研究论文 | 提出一种结合元启发式算法和集成学习的混合深度学习模型,用于污染物浓度的时间敏感预测 | 首次将爬行动物搜索算法(RSA)与CNN、LSTM和XGBoost集成,通过特征优化和重要性评分提升预测性能 | 研究仅针对印度城市环境,未验证在其他地理区域的适用性 | 开发高精度的污染物浓度预测模型,支持空气质量长期预报 | 大气污染物包括PM2.5、CO、SO2和NO2 | 机器学习 | NA | 时间序列分析 | CNN, LSTM, XGBoost, RSA | 时间序列数据 | NA | NA | CNN, LSTM, Transformer, BiLSTM, BiRNN, ANN, BiGRU | 准确率, 鲁棒性, 误差指标, R²分数 | NA |
| 1060 | 2025-11-11 |
Deep learning models simultaneously trained on multiple datasets improve base-editing activity prediction
2025-Nov-07, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-65200-5
PMID:41203686
|
研究论文 | 通过同时训练多个数据集的深度学习模型提高碱基编辑活性预测准确性 | 首次开发能够同时训练多个不同数据集的深度学习模型,并支持数据集感知预测 | NA | 提高CRISPR碱基编辑系统中gRNA设计的准确性 | 碱基编辑gRNA效率预测 | 机器学习 | NA | CRISPR碱基编辑技术 | 深度神经网络 | gRNA序列数据 | 约20,000个gRNAs(包含A•T to G•C和C•G to T•A转换) | NA | 深度神经网络 | NA | NA |