本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10581 | 2025-05-02 |
Prediction of the Therapeutic Response to Neoadjuvant Chemotherapy for Rectal Cancer Using a Deep Learning Model
2025, Journal of the anus, rectum and colon
DOI:10.23922/jarc.2024-085
PMID:40302856
|
research paper | 开发了一种基于深度学习模型的非侵入性预测方法,用于预测直肠癌患者对新辅助化疗的治疗反应 | 使用深度学习模型(残差卷积神经网络)从化疗前的CT图像中预测直肠癌患者对新辅助化疗的病理反应 | 样本量较小(57名患者),且仅针对SOX化疗方案 | 优化直肠癌新辅助化疗的治疗方案 | 直肠癌患者 | digital pathology | rectal cancer | CT imaging | CNN | image | 57名患者(49名用于训练和验证,8名用于测试) |
10582 | 2025-05-02 |
Automatic pelvic fracture segmentation: a deep learning approach and benchmark dataset
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1511487
PMID:40303367
|
research paper | 提出了一种基于深度学习的自动骨盆骨折分割方法,并公开了一个基准数据集 | 采用两个顺序网络进行解剖分割和骨折分割,并引入距离加权损失、多尺度深度监督和平滑过渡策略以提高性能 | 未提及方法在极端骨折情况下的表现或泛化能力 | 开发自动骨盆骨折分割方法以辅助创伤诊断和图像引导复位手术 | 骨盆骨折的CT图像 | digital pathology | pelvic fracture | CT | CNN | image | 150 CTs |
10583 | 2025-05-02 |
Application and research progress of artificial intelligence in allergic diseases
2025, International journal of medical sciences
IF:3.2Q1
DOI:10.7150/ijms.105422
PMID:40303497
|
综述 | 本文综述了人工智能在过敏性疾病中的应用和研究进展,重点关注哮喘等疾病 | 总结了人工智能在过敏性疾病预测、诊断、治疗和管理中的最新应用 | 简要分析了各种智能辅助方法的优势和局限性 | 为研究团队和医务人员提供人工智能在过敏性疾病中应用的参考 | 哮喘、特应性皮炎、食物过敏、过敏性鼻炎和荨麻疹等过敏性疾病 | 自然语言处理 | 过敏性疾病 | 强化学习、机器学习、深度学习、自然语言处理 | NA | 文本、视觉和听觉数据 | NA |
10584 | 2025-05-02 |
Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling
2025, Frontiers in pharmacology
IF:4.4Q1
DOI:10.3389/fphar.2025.1541509
PMID:40303920
|
综述 | 本文综述了人工智能在传统中医多代谢物多靶点相互作用建模中的应用与进展 | 整合人工智能的多组学技术、中医专用数据库、机器学习和深度学习等方法,推动中医向精准医学转变 | 数据异质性、模型可解释性有限、因果混杂以及实际应用中鲁棒性验证不足 | 探讨人工智能在中医靶点预测中的应用,提升其可靠性和可扩展性 | 传统中医的多代谢物和多靶点干预机制 | 人工智能在医学中的应用 | 复杂疾病 | 多组学技术、机器学习、深度学习 | ML、DL、零样本学习、端到端架构、自监督对比学习 | 多组学数据 | NA |
10585 | 2025-05-02 |
Association prediction of lncRNAs and diseases using multiview graph convolution neural network
2025, Frontiers in genetics
IF:2.8Q2
DOI:10.3389/fgene.2025.1568270
PMID:40303981
|
研究论文 | 提出了一种基于多视图图卷积神经网络的方法MVIGCN,用于预测lncRNA与疾病的关联 | 整合多模态数据构建异质网络,通过注意力机制建模拓扑特征和多尺度关系,提高预测准确性 | 网络复杂性可能导致计算成本较高,且模型性能依赖于数据质量 | 解码lncRNA在疾病生物学中的功能,为治疗靶点优先排序提供工具 | lncRNA与疾病的关联 | 机器学习 | NA | 图卷积网络(GCN) | MVIGCN | 多模态数据 | NA |
10586 | 2025-05-01 |
PLPTP: A Motif-based Interpretable Deep Learning Framework Based on Protein Language Models for Peptide Toxicity Prediction
2025-Jun-15, Journal of molecular biology
IF:4.7Q1
DOI:10.1016/j.jmb.2025.169115
PMID:40158838
|
研究论文 | 本研究提出了一种基于深度学习的肽毒性预测模型PLPTP,整合了ESM2、BiLSTM和DNN技术,并通过基序分析增强模型的可解释性 | 结合ESM2、BiLSTM和DNN的深度学习框架,引入基序分析提高模型可解释性,使用Focal Loss解决类别不平衡问题 | 未提及模型在跨物种或不同肽类上的泛化能力测试 | 提高肽毒性预测的准确性以促进更安全的肽类药物设计 | 肽序列及其毒性特征 | 生物信息学 | NA | ESM2蛋白语言模型、BiLSTM、DNN | ESM2+BiLSTM+DNN混合模型 | 蛋白质序列数据 | 未明确提及具体样本量 |
10587 | 2025-05-01 |
AI-Driven Microscopy: Cutting-Edge Approach for Breast Tissue Prognosis Using Microscopic Images
2025-May, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24788
PMID:39748498
|
研究论文 | 本文提出了一种基于AI驱动的显微镜技术,用于乳腺癌组织的预后预测,通过深度学习框架提高临床诊断的准确性和效率 | 结合了squeeze-and-excitation和dilated dense convolution blocks的深度学习框架,以及轻量级多尺度特征提取、动态区域注意力、子区域分类和区域正则化损失函数,显著提高了乳腺癌亚型分类的准确性 | 研究依赖于特定的显微镜图像数据集,可能在其他类型的数据或设备上表现不同 | 开发一种高效、精确的定量病理图像分析方法,以改善乳腺癌的临床诊断和预后预测 | 乳腺癌组织的显微镜图像 | 数字病理学 | 乳腺癌 | 深度学习 | DenseNet, VGGNet-19, ResNet152V2, EfficientNetV2-B1 | 图像 | 显微镜乳腺图像数据集,具体数量未提及 |
10588 | 2025-05-01 |
Highly-Efficient Differentiation of Reactive Lymphocytes in Peripheral Blood Using Multi-Object Detection Network With Large Kernels
2025-May, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24775
PMID:39760201
|
研究论文 | 提出了一种高效的多目标检测网络,用于外周血中反应性淋巴细胞的分化检测 | 引入了空间到深度卷积(SPD-Conv)、动态大核注意力机制(DLKA)和渐进特征金字塔网络(AFPN),提升了模型对小而密集目标的检测能力和多尺度特征融合能力 | 未提及模型在临床实际应用中的验证情况 | 开发计算机辅助诊断系统,用于反应性淋巴细胞和其他白细胞的检测 | 外周血中的反应性淋巴细胞和其他白细胞 | 计算机视觉 | 病毒感染 | 深度学习 | 多目标检测网络 | 医学影像 | NA |
10589 | 2025-05-01 |
Enhancing panoramic dental imaging with AI-driven arch surface fitting: achieving improved clarity and accuracy through an optimal reconstruction zone
2025-05-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twaf006
PMID:39832267
|
研究论文 | 本研究开发了一种基于AI的全自动方法,通过优化3D重建区域生成更清晰、对齐良好的全景牙科影像 | 采用3D U-Net深度学习模型生成牙弓曲面并调整全景视图,实现了关键牙科特征的高对比度和清晰度 | 未来研究需要验证该方法在不同牙科和颌面结构患者中的稳健性 | 开发自动化方法以生成更清晰、对齐良好的全景牙科影像 | 312名患者的锥形束CT(CBCT)扫描数据 | 数字病理 | 牙科疾病 | 锥形束CT(CBCT)扫描 | 3D U-Net | 医学影像 | 312名患者(平均年龄40岁,范围10-78岁,41.3%男性,58.7%女性) |
10590 | 2025-05-01 |
Deep learning-based segmentation of the mandibular canals in cone-beam CT reaches human-level performance
2025-05-01, Dento maxillo facial radiology
DOI:10.1093/dmfr/twae069
PMID:39932925
|
research paper | 评估基于深度学习的下颌管分割技术在锥形束CT数据中的准确性和可靠性,为牙科种植治疗规划提供支持工具 | 提出的深度学习模型在下颌管分割任务中达到人类水平的表现,并可能减少神经血管并发症风险 | 样本量相对较小(90例CBCT扫描),且仅由两名经验丰富的牙科影像从业者进行定性评估 | 开发可靠且高效的牙科种植治疗规划支持工具 | 下颌管在锥形束CT(CBCT)中的分割 | digital pathology | NA | 锥形束CT(CBCT) | hierarchical convolutional neural network | image | 90例CBCT扫描(69例训练,1例验证,20例测试) |
10591 | 2025-04-04 |
scAtlasVAE: a deep learning framework for generating a human CD8+ T cell atlas
2025-May, Nature reviews. Cancer
DOI:10.1038/s41568-025-00811-0
PMID:40175619
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
10592 | 2025-05-01 |
Analyzing resuscitation conference content through the lens of the chain of survival
2025-May, Resuscitation plus
IF:2.1Q2
DOI:10.1016/j.resplu.2025.100951
PMID:40297165
|
研究论文 | 通过生存链框架分析复苏会议的内容 | 首次使用生存链框架对复苏会议摘要进行系统分析,并考察了人工智能和机器学习在数据分析中的应用 | 仅分析了两大会议的数据,可能无法代表所有复苏科学会议的情况 | 了解复苏科学会议中讨论的主题分布及其与生存链框架的对应关系 | 复苏会议摘要 | 医学信息学 | 心血管疾病 | 机器学习 | NA | 文本 | Resuscitation 2024的54篇摘要和Resuscitation Science Symposium 2024的47篇摘要 |
10593 | 2025-05-01 |
Engaging the Community: CASP Special Interest Groups
2025-Apr-30, Proteins
IF:3.2Q2
DOI:10.1002/prot.26833
PMID:40304050
|
评论 | 本文介绍了CASP特别兴趣小组(SIGs)的成立及其在促进跨学科对话和合作中的作用 | 通过建立特别兴趣小组和在线研讨会系列,促进了CASP社区成员之间的持续对话和跨学科合作 | 未提及具体的预测算法或技术的改进细节 | 促进CASP社区成员之间的持续对话和跨学科合作 | CASP社区成员,包括深度学习专家和NMR专家等 | 生物分子结构预测 | NA | NA | NA | NA | NA |
10594 | 2025-05-01 |
Automated Operative Phase and Step Recognition in Vestibular Schwannoma Surgery: Development and Preclinical Evaluation of a Deep Learning Neural Network (IDEAL Stage 0)
2025-Apr-30, Neurosurgery
IF:3.9Q1
DOI:10.1227/neu.0000000000003466
PMID:40304484
|
research paper | 开发并评估了一种深度学习神经网络,用于自动识别前庭神经鞘瘤手术中的操作阶段和步骤 | 首次将机器学习应用于长时间(中位数超过5小时)、数据量大的手术视频分析,特别是在前庭神经鞘瘤切除术中 | 在个别步骤分类上仍有改进空间,且样本量较小 | 开发并评估一种能够自动识别手术工作流程的机器学习模型,用于前庭神经鞘瘤切除术 | 21例显微镜下经乙状窦后入路前庭神经鞘瘤切除术的手术视频 | digital pathology | vestibular schwannoma | deep learning | CNN and RNN | video | 21例手术视频 |
10595 | 2025-05-01 |
Functional blepharoptosis screening with generative augmented deep learning from external ocular photography
2025-Apr-30, Orbit (Amsterdam, Netherlands)
DOI:10.1080/01676830.2025.2497460
PMID:40304715
|
research paper | 开发并验证了一种深度学习模型,用于从外部眼部照片中检测功能性上睑下垂,并量化了使用合成图像增强训练数据对模型性能的影响 | 利用生成对抗网络(StyleGAN)生成的合成数据增强训练集,提高了模型检测功能性上睑下垂的性能 | 样本量相对较小,且仅来自单一的三级眼整形诊所,可能影响模型的泛化能力 | 开发一种能够从外部眼部照片中高置信度检测功能性上睑下垂的深度学习模型 | 771只眼睛的外部眼部照片,包括639例临床诊断为功能性上睑下垂和132例无此症状的患者 | computer vision | geriatric disease | deep learning, StyleGAN | CNN, GAN | image | 771只眼睛(539训练,76验证,156测试),并额外使用2000张合成图像增强训练集 |
10596 | 2025-05-01 |
Computer-aided diagnosis tool utilizing a deep learning model for preoperative T-staging of rectal cancer based on three-dimensional endorectal ultrasound
2025-Apr-30, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04966-0
PMID:40304753
|
research paper | 开发了一种基于深度学习模型的计算机辅助诊断工具,用于直肠癌术前T分期 | 利用三维直肠内超声(3D-ERUS)图像,开发了一种新的深度学习模型辅助诊断工具,提高了直肠癌T分期的准确性和一致性 | 研究为回顾性分析,样本量相对较小(216例患者) | 提高直肠癌术前T分期的准确性和一致性 | 216例直肠癌患者 | digital pathology | rectal cancer | 3D-ERUS | deep learning model | image | 216例直肠癌患者(训练队列156例,测试队列60例) |
10597 | 2025-05-01 |
Low-Rank Fine-Tuning Meets Cross-modal Analysis: A Robust Framework for Age-Related Macular Degeneration Categorization
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01513-7
PMID:40301288
|
研究论文 | 提出了一种创新的多模态深度学习框架,用于高效应用于多模态年龄相关性黄斑变性分类任务 | 引入了低秩适应(LoRA)技术以减少多模态集成的计算复杂性,并使用深度典型相关分析(DCCA)进行非线性映射和特征融合 | NA | 解决单模态信息不足以完全捕捉年龄相关性黄斑变性复杂病理特征的问题 | 年龄相关性黄斑变性(AMD)患者 | 计算机视觉 | 年龄相关性黄斑变性 | 深度典型相关分析(DCCA),低秩适应(LoRA) | Vision Transformer | 图像(CFP和OCT) | 公共数据集MMC-AMD |
10598 | 2025-05-01 |
Attention-Based Dual-Path Deep Learning for Blood Cell Image Classification Using ConvNeXt and Swin Transformer
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01479-6
PMID:40301289
|
研究论文 | 本文提出了一种基于注意力机制的双路径深度学习架构,结合ConvNeXt和Swin Transformer网络,用于血液细胞图像分类 | 创新性地结合了卷积神经网络和Transformer的优势,并引入了多尺度预处理模块(MPM)以提升图像质量 | 未提及模型在临床实际应用中的具体验证情况 | 提高血液细胞图像分类的准确性和效率,以辅助血液学疾病的诊断 | 血液细胞图像 | 计算机视觉 | 血液疾病 | 深度学习 | ConvNeXt, Swin Transformer | 图像 | 17,092张血液细胞图像 |
10599 | 2025-05-01 |
Super-Resolution Deep Learning Reconstruction for T2*-Weighted Images: Improvement in Microbleed Lesion Detection and Image Quality
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01522-6
PMID:40301290
|
research paper | 本研究评估了超分辨率深度学习重建(SR-DLR)在脑部MRI中检测微出血和提升图像质量的效果 | SR-DLR在微出血检测和图像清晰度方面显著优于传统DLR方法 | 研究为回顾性分析,样本量较小(69例患者) | 评估SR-DLR在脑部MRI中提升微出血检测和图像质量的效果 | 69例接受3T脑部MRI检查的患者(44名女性,平均年龄66.2岁) | digital pathology | 脑血管疾病 | 3T脑部MRI(T2*加权2D梯度回波和3D血流敏感黑血成像) | 深度学习超分辨率重建(SR-DLR) | MRI图像 | 69例患者 |
10600 | 2025-05-01 |
A Dirichlet Distribution-Based Complex Ensemble Approach for Breast Cancer Classification from Ultrasound Images with Transfer Learning and Multiphase Spaced Repetition Method
2025-Apr-29, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01515-5
PMID:40301291
|
研究论文 | 提出了一种基于Dirichlet分布的复杂集成方法,结合迁移学习和多阶段间隔重复方法,用于从超声图像中进行乳腺癌分类 | 将教育科学中的间隔重复方法首次应用于人工智能领域,结合Dirichlet分布进行模型集成,提高了分类准确率和学习效率 | 研究仅使用了BUSI数据集,样本来源单一,需要更多外部数据验证模型的泛化能力 | 开发一种高精度的乳腺癌超声图像分类系统 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 迁移学习、数据增强、间隔重复方法 | DenseNet201, InceptionV3, VGG16, ResNet152的集成模型 | 超声图像 | BUSI数据集(具体数量未提及) |