本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10601 | 2025-03-19 |
Non-invasive Assessment of Coronary Artery Disease: The Role of AI in the Current Status and Future Directions
2025-Feb, Cureus
DOI:10.7759/cureus.78994
PMID:40091936
|
研究论文 | 本文探讨了人工智能在非侵入性冠状动脉疾病评估中的当前应用和未来发展方向 | 强调了人工智能,特别是深度学习和自然语言处理技术,在提高非侵入性冠状动脉疾病评估诊断准确性和临床效率方面的革命性潜力 | 人工智能的广泛应用面临数据隐私、高计算成本和资源分配不均等关键挑战 | 研究目的是探索人工智能在非侵入性冠状动脉疾病评估中的应用及其未来发展方向 | 冠状动脉疾病(CAD)患者 | 自然语言处理 | 心血管疾病 | 深度学习,自然语言处理 | NA | NA | NA |
10602 | 2025-03-19 |
The Pfam protein families database: embracing AI/ML
2025-Jan-06, Nucleic acids research
IF:16.6Q1
DOI:10.1093/nar/gkae997
PMID:39540428
|
研究论文 | 本文介绍了Pfam蛋白质家族数据库的最新发展,包括与InterPro的整合、ECOD结构分类的协调、以及利用AlphaFold结构预测优化域边界和识别新域 | 利用AlphaFold结构预测优化域边界和识别新域,开发了Pfam-N,通过深度学习扩展家族覆盖范围,使UniProtKB覆盖范围增加了8.8% | 尽管有最新进展,仍有许多蛋白质家族未被分类,Pfam仍在努力实现蛋白质宇宙的全面覆盖 | 更新和扩展Pfam蛋白质家族数据库,提高蛋白质域和家族的注释和分析能力 | 蛋白质域和家族 | 生物信息学 | NA | 深度学习,AlphaFold结构预测 | 深度学习模型 | 蛋白质序列和结构数据 | NA |
10603 | 2025-03-19 |
Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1510905
PMID:40083475
|
研究论文 | 本文比较了使用LiDAR技术和深度学习模型进行急性烧伤伤口3D和2D面积测量的差异 | 开发了结合深度学习模型和LiDAR技术的应用B.E.N.,用于烧伤伤口的3D和2D测量,并验证了3D分割结果与实际烧伤伤口大小的匹配度 | 研究中未明确提及样本的具体数量,且仅针对烧伤伤口进行了研究,未涉及其他类型的伤口 | 比较3D和2D测量烧伤伤口面积的准确性,并探讨肢体曲率对3D/2D面积比的影响 | 烧伤伤口 | 计算机视觉 | 烧伤 | LiDAR技术 | 深度学习模型 | 图像 | NA |
10604 | 2025-03-19 |
Machine and deep learning to predict viral fusion peptides
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.011
PMID:40083606
|
研究论文 | 本文探讨了使用机器学习和深度学习模型预测病毒融合肽的方法 | 采用基于机器学习和深度学习的方法,特别是使用最先进的氨基酸标记分类转换器模型,有效预测病毒融合肽的位置 | 对于实验数据有限的病毒,预测结果可能存在不确定性 | 开发能够预测病毒融合蛋白序列中融合肽段的生物信息学工具 | 病毒融合蛋白及其融合肽段 | 自然语言处理 | NA | 机器学习和深度学习 | 转换器模型 | 蛋白质序列 | 超过50种模型和特征的组合 |
10605 | 2025-03-19 |
Explainable AI in medical imaging: an interpretable and collaborative federated learning model for brain tumor classification
2025, Frontiers in oncology
IF:3.5Q2
DOI:10.3389/fonc.2025.1535478
PMID:40083877
|
研究论文 | 本文提出了一种可解释的协作联邦学习模型(CFLM),用于脑肿瘤分类,结合了可解释的人工智能(XAI)技术 | 结合了联邦学习(FL)和GoogLeNet架构,解决了传统集中式模型在数据多样性和模型透明度方面的挑战 | 研究中仅使用了10个客户端和50轮通信,样本量和训练轮次可能不足以全面验证模型的泛化能力 | 提高脑肿瘤分类的准确性和模型的可解释性,以支持临床决策 | 脑肿瘤(包括胶质瘤、脑膜瘤、无肿瘤和垂体瘤) | 计算机视觉 | 脑肿瘤 | 深度学习(DL)、联邦学习(FL)、Grad-CAM、显著性图可视化 | GoogLeNet | MRI图像 | 10个客户端,每个客户端使用分散的本地数据集进行训练 |
10606 | 2025-03-19 |
Effect of natural and synthetic noise data augmentation on physical action classification by brain-computer interface and deep learning
2025, Frontiers in neuroinformatics
IF:2.5Q3
DOI:10.3389/fninf.2025.1521805
PMID:40083893
|
研究论文 | 本研究探讨了自然和合成噪声数据增强对通过脑机接口和深度学习进行物理动作分类的影响 | 提出了两种噪声数据增强方法(自然和合成),并比较了它们对分类性能的影响,特别是在资源有限的设备上应用的潜力 | 研究中使用的深度神经网络相对简单,可能限制了模型的复杂性和性能 | 研究环境噪声对脑机接口中物理动作分类的影响 | 脑电图(EEG)信号和物理动作分类 | 脑机接口 | NA | 噪声数据增强(NDA) | 全连接网络(FCN)和卷积神经网络(CNN) | 脑电图(EEG)信号 | 使用grasp-and-lift(GAL)数据集中的手指-手掌-手操作数据 |
10607 | 2025-03-19 |
Patho-Net: enhancing breast cancer classification using deep learning and explainable artificial intelligence
2025, American journal of cancer research
IF:3.6Q2
DOI:10.62347/XKFN1793
PMID:40084355
|
研究论文 | 本文提出了一种名为Patho-Net的深度学习模型,用于乳腺癌分类,解决了可扩展性、固定大小输入图像和有限数据集上的过拟合问题 | Patho-Net模型结合了GRU网络和U-Net架构,无需调整图像大小,提高了计算效率,并通过XAI提供了模型预测的清晰视觉解释 | NA | 提高乳腺癌分类的准确性和可解释性 | 乳腺癌组织病理学图像 | 数字病理学 | 乳腺癌 | 深度学习,可解释人工智能(XAI) | U-Net,GRU | 图像 | 100X BreakHis数据集 |
10608 | 2025-03-19 |
BMWP: the first Bengali math word problems dataset for operation prediction and solving
2025, Discover artificial intelligence
DOI:10.1007/s44163-025-00243-7
PMID:40092969
|
研究论文 | 本文介绍了首个孟加拉语数学应用题数据集BMWP,用于操作预测和解题,并探讨了使用深度学习技术进行孟加拉语应用题操作预测的方法 | 首次创建了孟加拉语数学应用题数据集BMWP,填补了低资源语言在这一领域的空白 | 数据集仅包含8653个应用题,可能不足以覆盖所有复杂情况 | 评估和提升AI模型在解决低资源语言数学应用题方面的能力 | 孟加拉语数学应用题 | 自然语言处理 | NA | 深度学习 | 深度学习神经网络架构 | 文本 | 8653个孟加拉语数学应用题 |
10609 | 2025-03-19 |
A review of machine learning and deep learning for Parkinson's disease detection
2025, Discover artificial intelligence
DOI:10.1007/s44163-025-00241-9
PMID:40092968
|
review | 本文综述了机器学习和深度学习在帕金森病检测和进展监测中的应用 | 通过整合多种数据源,提供了新的视角,并特别展示了音频分析和步态分析在早期症状检测和疾病进展监测中的有效性 | 需要大量且多样化的数据集,数据隐私问题,以及医疗数据质量的挑战,开发可解释的AI以确保临床医生能够信任和理解ML和DL模型 | 提高帕金森病诊断的准确性 | 帕金森病患者 | machine learning | geriatric disease | NA | SVM, RF, CNN | audio recordings, gait analysis, medical imaging | NA |
10610 | 2025-03-19 |
Pollen image manipulation and projection using latent space
2025, Frontiers in plant science
IF:4.1Q1
DOI:10.3389/fpls.2025.1539128
PMID:40093610
|
研究论文 | 本文利用深度学习技术中的风格迁移方法,研究如何通过显微镜图像处理改变花粉颗粒的大小和形状 | 首次将风格迁移技术应用于花粉颗粒图像的处理,以揭示其结构特征并生成多样化的花粉图像 | 未明确提及具体的数据集规模或实验验证的详细结果 | 研究花粉颗粒图像的处理方法,以增强对植物分类和生态学的理解 | 花粉颗粒的显微镜图像 | 计算机视觉 | NA | 风格迁移 | NA | 图像 | NA |
10611 | 2025-03-19 |
A two-step concept-based approach for enhanced interpretability and trust in skin lesion diagnosis
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.02.013
PMID:40093651
|
研究论文 | 本文提出了一种新颖的两步概念驱动方法,旨在提高皮肤病变诊断的可解释性和信任度 | 通过模拟概念瓶颈模型的两个阶段,利用预训练的视觉语言模型自动预测临床概念,并使用现成的大型语言模型基于预测概念生成疾病诊断,支持测试时的人工干预以修正预测概念,从而提高最终诊断的准确性和决策透明度 | 需要少量标注示例,且未提及在大规模数据集上的验证 | 提高深度学习系统在临床环境中的可解释性和信任度 | 皮肤病变诊断 | 计算机视觉 | 皮肤病变 | 概念瓶颈模型(CBM)、视觉语言模型(VLM)、大型语言模型(LLM) | CBM、VLM、LLM | 图像 | 三个皮肤病变数据集 |
10612 | 2025-03-19 |
The global research of artificial intelligence on inflammatory bowel disease: A bibliometric analysis
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251326217
PMID:40093709
|
研究论文 | 本文通过文献计量学分析评估了人工智能(AI)在炎症性肠病(IBD)中的相关研究,识别了研究基础、当前热点和未来发展方向 | 首次通过文献计量学分析总结了AI在IBD中的应用现状,并可视化揭示了发展趋势和未来研究热点 | AI在IBD中的应用仍处于初期阶段,研究深度和广度有待进一步扩展 | 评估AI在IBD中的研究现状,识别研究基础和未来发展方向 | 炎症性肠病(IBD) | 机器学习 | 炎症性肠病 | 文献计量学分析 | 深度学习模型 | 文献数据 | 176篇AI相关论文,涉及1919位作者、790个研究机构、184种期刊和49个国家/地区 |
10613 | 2025-03-19 |
Data transformation of unstructured electroencephalography reports by natural language processing: improving data usability for large-scale epilepsy studies
2025, Frontiers in neurology
IF:2.7Q3
DOI:10.3389/fneur.2025.1521001
PMID:40093737
|
研究论文 | 本研究介绍了一种利用自然语言处理技术将癫痫患儿的非结构化脑电图报告转化为结构化数据的层次算法 | 开发了一种结合深度学习和基于规则的关键词提取的分层算法,用于将非结构化脑电图报告转化为结构化数据,提高了数据可用性 | 研究主要针对儿科癫痫患者,可能不适用于其他类型的患者或疾病 | 提高脑电图报告的数据可用性,以支持大规模癫痫研究 | 儿科癫痫患者的脑电图报告 | 自然语言处理 | 癫痫 | 自然语言处理(NLP) | 深度学习 | 文本 | 17,172份脑电图报告,来自3,423名儿科患者,其中6,173份正常和6,173份异常报告用于算法开发 |
10614 | 2025-03-19 |
ViE-Take: A Vision-Driven Multi-Modal Dataset for Exploring the Emotional Landscape in Takeover Safety of Autonomous Driving
2025, Research (Washington, D.C.)
DOI:10.34133/research.0603
PMID:40093973
|
研究论文 | 本文介绍了ViE-Take,一个用于探索自动驾驶接管安全中情感影响的多模态数据集 | ViE-Take是首个以视觉驱动的方式探索自动驾驶接管中情感影响的数据集,具有多源情感激发、多模态驾驶员数据收集和多维情感注释三个关键属性 | 数据集的应用范围和深度仍需进一步验证和扩展 | 探索情感对驾驶员接管表现的影响,并开发相关预测模型 | 自动驾驶中的驾驶员接管表现 | 计算机视觉 | NA | 深度学习 | CNN, LSTM, GAN等 | 图像、视频 | 未明确提及具体样本数量 |
10615 | 2025-03-18 |
Physics-based generative adversarial network for real-time acoustic holography
2025-May, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107583
PMID:39893755
|
研究论文 | 本文提出了一种基于物理模型的生成对抗网络(GAN),用于实时声学全息成像 | 提出了一种结合物理模型(ASM)的深度学习算法,用于学习从目标场到源相位全息图的逆物理映射,并开发了具有两个解码器分支的Y-Net结构,以解决神经网络在高频特征上的固有局限性 | 神经网络在高频特征上的固有局限性 | 提高相位全息图计算的高保真度和实时性能 | 声学全息成像中的相位全息图 | 计算机视觉 | NA | 生成对抗网络(GAN) | GAN, Y-Net | 声学全息图 | NA |
10616 | 2025-03-18 |
Prior Knowledge-Guided U-Net for Automatic Clinical Target Volume Segmentation in Postmastectomy Radiation Therapy of Breast Cancer
2025-Apr-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2024.11.104
PMID:39667584
|
研究论文 | 本研究旨在设计和评估一种基于先验知识引导的U-Net(PK-UNet)模型,用于乳腺癌术后放疗中的临床靶区(CTV)自动分割 | 首次将先验医学知识整合到深度学习框架中,用于乳腺癌术后放疗的CTV分割 | 研究样本量相对较小,仅包含102例CT扫描 | 提高乳腺癌术后放疗中CTV分割的准确性和临床工作效率 | 乳腺癌术后患者的CT扫描图像 | 计算机视觉 | 乳腺癌 | CT扫描 | U-Net | 图像 | 102例乳腺癌术后患者的CT扫描 |
10617 | 2025-03-18 |
DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis
2025-Mar-14, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3551514
PMID:40085471
|
研究论文 | 本文提出了一种结合密集卷积网络、视觉Transformer和专家混合(MoE)的Dense Transformer基础模型(DenseFormer-MoE),用于多任务脑图像分析 | 该模型通过结合密集卷积网络、视觉Transformer和MoE,逐步学习和整合T1加权磁共振图像(sMRI)的局部和全局特征,以应对多任务学习中的优化冲突 | 模型主要针对T1加权磁共振图像,未涉及其他类型的脑图像数据 | 开发一个适用于多种脑图像分析任务的基础模型 | T1加权磁共振图像(sMRI) | 计算机视觉 | 脑部疾病 | Masked Autoencoder, 自监督学习 | DenseFormer-MoE, Vision Transformer, Densenet | 图像 | 多个知名脑成像数据集,包括UK Biobank (UKB), Alzheimer's Disease Neuroimaging Initiative (ADNI), 和 Parkinson's Progression Markers Initiative (PPMI) |
10618 | 2025-03-18 |
Deep Learning-Based Contrast Boosting in Low-Contrast Media Pre-TAVR CT Imaging
2025-Mar-12, Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
DOI:10.1177/08465371251322054
PMID:40071690
|
研究论文 | 本研究探讨了基于深度学习的对比增强(DL-CB)在低对比剂(low-CM)CT中对图像质量和测量可靠性的影响,用于经导管主动脉瓣置换术(TAVR)前的评估 | 首次在低对比剂CT中应用深度学习技术进行对比增强,显著提高了图像质量和测量可靠性 | 研究为回顾性研究,样本量较小(n=68),且仅限于肾功能不全患者 | 评估深度学习对比增强技术在低对比剂CT中的效果,用于TAVR前的图像评估 | 肾功能不全的TAVR候选者 | 医学影像 | 心血管疾病 | 深度学习对比增强(DL-CB) | 深度学习 | CT图像 | 68名肾功能不全的TAVR候选者 |
10619 | 2025-03-18 |
Metric-Guided Conformal Bounds for Probabilistic Image Reconstruction
2025-Mar-04, ArXiv
PMID:38711427
|
研究论文 | 本文提出了一种框架,用于计算从概率黑箱图像重建算法得出的预测边界,以提供关于受试者真实状态的可证明有效的统计声明 | 该框架通过使用临床相关指标表示重建扫描,并利用共形预测(CP)校准真实指标的边界,提供了比传统基于像素的边界方法更好的语义解释 | 需要先前的校准数据集来校准边界,可能限制了其在新数据集上的应用 | 提供关于受试者真实状态的可证明有效的统计声明 | 稀疏视图计算机断层扫描(CT)图像 | 计算机视觉 | NA | 共形预测(CP) | 概率黑箱图像重建算法 | 图像 | NA |
10620 | 2025-03-18 |
Automatic rating of incomplete hippocampal inversions evaluated across multiple cohorts
2025-Jan-20, ArXiv
PMID:39148932
|
研究论文 | 本文提出了一种自动评估不完全海马反转(IHI)的方法,通过预测四个解剖学标准并汇总形成IHI评分,进行了广泛的机器学习方法和训练策略的实验研究 | 首次提出自动评估IHI的方法,并展示了深度学习模型在多个队列中的泛化能力 | 研究基于特定队列,可能缺乏对其他人群的普适性 | 开发自动评估不完全海马反转(IHI)的方法,以理解其与神经和精神疾病的潜在关系 | 不完全海马反转(IHI) | 数字病理 | 癫痫, 精神分裂症 | 深度学习 | conv5-FC3, ResNet, SECNN, 岭回归 | T1加权MR图像 | IMAGEN研究的2,008名参与者,QTIM研究的993名参与者,QTAB研究的403名参与者,以及UKBiobank的985名受试者 |