本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10761 | 2025-03-11 |
Accelerating polymer self-consistent field simulation and inverse DSA-lithography with deep neural networks
2025-Mar-14, The Journal of chemical physics
IF:3.1Q1
DOI:10.1063/5.0255288
PMID:40062757
|
研究论文 | 本文提出了一种基于深度学习的方法,用于加速自洽场理论(SCFT)模拟,并通过深度神经网络(DNN)直接映射早期SCFT结果到平衡结构,显著减少了模拟时间 | 通过深度神经网络直接映射早期SCFT结果到平衡结构,避免了耗时的SCFT迭代,显著提高了模拟效率 | 需要生成训练数据集,且训练网络的成本可能较高 | 加速自洽场理论(SCFT)模拟,提高计算效率 | 嵌段共聚物(BCP)自组装 | 机器学习 | NA | 深度神经网络(DNN) | DNN | 模拟数据 | NA |
10762 | 2025-03-11 |
AI-Driven Drug Discovery for Rare Diseases
2025-Mar-10, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01966
PMID:39689164
|
综述 | 本文探讨了人工智能(AI)在罕见病药物发现中的潜力,通过克服传统药物发现模型的挑战,加速罕见病治疗的发展 | 本文综合了当前知识和最新突破,提供了关于AI如何加速罕见病治疗发展的关键见解,填补了文献中的关键空白 | 本文主要基于现有文献和突破,缺乏实际应用案例和数据的支持 | 探索AI在罕见病药物发现中的应用,以加速治疗发展并改善患者预后 | 罕见病(RDs)及其治疗 | 机器学习 | 罕见病 | 机器学习(ML)和深度学习(DL) | NA | NA | NA |
10763 | 2025-03-11 |
Automated detection of small hepatocellular carcinoma in cirrhotic livers: applying deep learning to Gd-EOB-DTPA-enhanced MRI
2025-Mar-10, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04853-8
PMID:40059243
|
研究论文 | 本文开发了一种基于深度学习的自动化方法,用于在肝硬化患者中检测小肝细胞癌(sHCC),并利用Gd-EOB-DTPA增强MRI进行验证 | 本研究首次将nnU-Net应用于小肝细胞癌的自动检测,并在肝硬化患者中验证了其有效性 | 研究为回顾性研究,样本量相对较小,且仅使用了单一类型的MRI数据 | 开发一种自动化深度学习方法,用于检测肝硬化患者中的小肝细胞癌 | 肝硬化患者中的小肝细胞癌(sHCC)和非HCC病变 | 计算机视觉 | 肝癌 | Gd-EOB-DTPA增强MRI | nnU-Net | MRI图像 | 120名肝硬化患者(78名sHCC患者和42名非HCC肝硬化患者) |
10764 | 2025-03-11 |
Obtaining full-arch implant scan with smartphone video and deep learning: An in vitro investigation on trueness and precision
2025-Mar-08, Journal of prosthodontics : official journal of the American College of Prosthodontists
DOI:10.1111/jopr.14041
PMID:40055947
|
研究论文 | 本研究探讨了使用智能手机摄像头和深度学习模型生成的全牙弓种植体扫描的准确性 | 结合智能手机视频和深度学习模型生成全牙弓种植体扫描,展示了与口腔内扫描仪相似的准确性 | 该方法的准确性尚不足以用于临床应用 | 研究智能手机摄像头和深度学习模型生成全牙弓种植体扫描的准确性 | 上颌无牙模型上的6个种植体和扫描体 | 计算机视觉 | NA | 深度学习 | 深度学习模型 | 视频 | 10次重复实验 |
10765 | 2025-03-11 |
Systematic Review and Meta-Analysis of Radiation Dose Reduction Studies in Pediatric Head CT
2025-Mar-07, AJNR. American journal of neuroradiology
DOI:10.3174/ajnr.A8730
PMID:40054878
|
系统综述与荟萃分析 | 本文综述了降低儿童头部CT扫描中辐射剂量的研究,并提供了这些研究中辐射剂量减少百分比的荟萃分析 | 本文通过系统综述和荟萃分析,识别了降低儿童头部CT辐射剂量的最常用参数,并强调了临床适应症在比较剂量减少研究中的重要性 | 研究方案的异质性、不完整的方案/结果报告以及机构、扫描仪、患者人口统计和临床适应症的变异性限制了研究结果的普遍性 | 评估和总结降低儿童头部CT扫描中辐射剂量的策略和效果 | 儿童头部CT扫描 | 医学影像 | 儿科疾病 | CT扫描、迭代重建技术 | NA | 医学影像数据 | 20项研究 |
10766 | 2025-03-11 |
Multimodal optimal matching and augmentation method for small sample gesture recognition
2025-Mar-06, Bioscience trends
IF:5.7Q1
DOI:10.5582/bst.2024.01370
PMID:39864830
|
研究论文 | 本文提出了一种多模态最优匹配和增强方法,用于小样本手势识别,通过引入运动信息到基于表面肌电图的识别中,实现了每个手势仅需一次采集的高效识别 | 引入运动信息到基于表面肌电图的识别中,提出了一种多模态最优匹配和增强方法,显著减少了数据采集的负担 | 方法在非健康用户中的应用效果需要进一步验证,且数据集的多样性可能仍然有限 | 提高小样本手势识别模型的准确性,减少数据采集的负担 | 手势识别,特别是基于表面肌电图的手势识别 | 机器学习 | 中风 | 数据增强,迁移学习 | 深度学习模型 | 生理信号数据,运动信息数据 | 自收集的中风患者数据集,Ninapro DB1数据集和Ninapro DB5数据集 |
10767 | 2025-03-11 |
MetAssimulo 2.0: a web app for simulating realistic 1D and 2D metabolomic 1H NMR spectra
2025-Mar-04, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf045
PMID:39862393
|
研究论文 | 本文介绍了MetAssimulo 2.0,一个用于模拟真实1D和2D代谢组学1H NMR光谱的Python网络应用 | MetAssimulo 2.0在1.0版本的基础上进行了全面升级,增加了对尿液、血液和脑脊液的光谱模拟功能,并引入了2D J-resolved和Correlation Spectroscopy光谱的模拟能力 | 尽管MetAssimulo 2.0提高了光谱模拟的真实性,但其模拟结果与真实光谱的Pearson相关系数约为0.82,仍有改进空间 | 开发一个工具以支持深度学习与代谢组学交叉领域的研究 | 1D和2D代谢组学1H NMR光谱 | 代谢组学 | NA | 核磁共振(NMR)光谱 | NA | 光谱数据 | NA |
10768 | 2025-03-11 |
gRNAde: Geometric Deep Learning for 3D RNA inverse design
2025-Feb-25, ArXiv
PMID:38827456
|
研究论文 | 本文介绍了gRNAde,一种基于几何深度学习的3D RNA逆设计管道,旨在设计考虑结构和动力学的RNA序列 | gRNAde通过多状态图神经网络和自回归解码,生成基于一个或多个3D骨架结构的候选RNA序列,显著提高了序列恢复率 | 尽管gRNAde在单状态固定骨架重新设计基准测试中表现优异,但在多状态设计方面的应用仍需进一步验证 | 研究目的是开发一种能够考虑3D构象多样性的RNA序列设计方法 | 研究对象是RNA序列及其3D骨架结构 | 机器学习 | NA | 几何深度学习 | 图神经网络(GNN) | 3D结构数据 | 14个来自PDB的RNA结构 |
10769 | 2025-03-11 |
ralphi: a deep reinforcement learning framework for haplotype assembly
2025-Feb-21, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.17.638151
PMID:40027721
|
研究论文 | 本文介绍了一种名为ralphi的深度强化学习框架,用于单倍型组装,该框架结合了深度学习的表示能力和强化学习,以准确地将读取片段分配到各自的单倍型集合中 | ralphi框架首次将深度学习和强化学习结合用于单倍型组装,通过片段图的经典问题简化来设定强化学习的奖励目标 | NA | 研究目的是开发一种新的方法,以更准确地组装个体二倍体基因组的单倍型 | 个体二倍体基因组的单倍型 | 机器学习 | NA | ONT读取 | 深度强化学习 | 基因读取数据 | 来自1000 Genomes Project的基因组数据 |
10770 | 2025-03-11 |
Long-Term Carotid Plaque Progression and the Role of Intraplaque Hemorrhage: A Deep Learning-Based Analysis of Longitudinal Vessel Wall Imaging
2025-Feb-19, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.12.09.24318661
PMID:39711698
|
研究论文 | 本研究利用深度学习技术分析颈动脉斑块长期进展及斑块内出血(IPH)的作用 | 首次使用深度学习分割管道在长期随访中识别IPH、量化IPH体积,并测量其对颈动脉斑块负担的影响 | 样本量较小(28名无症状颈动脉粥样硬化患者),且仅针对无症状患者进行研究 | 评估IPH对颈动脉斑块负担长期进展的影响 | 无症状颈动脉粥样硬化患者 | 数字病理 | 心血管疾病 | 多对比磁共振血管壁成像(VWI) | 深度学习分割管道 | 图像 | 28名无症状颈动脉粥样硬化患者,共50条动脉 |
10771 | 2025-03-11 |
Global Deep Forecasting with Patient-Specific Pharmacokinetics
2025-Feb-12, ArXiv
PMID:37965077
|
研究论文 | 本文提出了一种新颖的混合全局-局部架构和药代动力学编码器,用于预测医疗时间序列数据,特别是在血糖预测任务中展示了其有效性 | 提出了一种混合全局-局部架构和药代动力学编码器,能够为深度学习模型提供患者特定的治疗效果信息 | 未明确提及具体局限性 | 提高医疗时间序列数据预测的准确性,特别是在患者特定药代动力学影响下的血糖预测 | 医疗时间序列数据,特别是血糖数据 | 机器学习 | 糖尿病 | 深度学习 | 混合全局-局部架构 | 时间序列数据 | 模拟数据和真实世界数据 |
10772 | 2025-03-11 |
gRNAde: A Geometric Deep Learning Pipeline for 3D RNA Inverse Design
2025, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/978-1-0716-4079-1_8
PMID:39312140
|
研究论文 | 本文介绍了一种名为gRNAde的几何深度学习管道,用于3D RNA逆向设计,该管道考虑了RNA的3D结构和动态性 | gRNAde采用图神经网络和SE(3)等变编码-解码框架,首次在RNA设计中明确考虑3D几何和构象多样性 | NA | 开发一种能够基于RNA的3D骨架结构设计RNA序列的计算工具 | RNA的3D骨架结构 | 机器学习 | NA | 几何深度学习 | 图神经网络 | 3D RNA骨架结构 | 来自PDB的现有RNA结构,包括核糖开关、适配体和核酶 |
10773 | 2025-03-10 |
Forecasting the eddying ocean with a deep neural network
2025-Mar-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-57389-2
PMID:40050275
|
研究论文 | 本文开发了一个名为WenHai的数据驱动全球海洋预报系统,通过训练深度神经网络来预测海洋中尺度涡旋的短期演变 | 首次将深度神经网络应用于全球海洋预报系统,并结合动量、热量和淡水通量的体公式来改进海气相互作用的表示 | 由于大气和海洋的动态特性不同,AI方法在海洋预报中的应用仍具有挑战性 | 提高全球海洋预报能力,特别是中尺度涡旋的短期演变预测 | 海洋中尺度涡旋 | 机器学习 | NA | 深度神经网络 | DNN | 海洋数据 | NA |
10774 | 2025-03-10 |
Classifying microfossil radiolarians on fractal pre-trained vision transformers
2025-Mar-06, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90988-z
PMID:40050318
|
研究论文 | 本文探讨了使用预训练的视觉变换器(ViT)和公式驱动的监督学习(FDSL)技术对微化石(放射虫)进行分类的效果 | 首次将视觉变换器(ViT)和公式驱动的监督学习(FDSL)应用于地质学中的微化石分类,相比传统CNN模型,平均精度提高了6-8% | 未提及具体样本量和数据集的多样性,可能影响模型的泛化能力 | 探索新的深度学习技术在地质学图像分类中的应用 | 微化石(放射虫) | 计算机视觉 | NA | 公式驱动的监督学习(FDSL) | 视觉变换器(ViT) | 图像 | NA |
10775 | 2025-03-10 |
Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data
2025-Mar-06, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-025-00777-y
PMID:40050400
|
研究论文 | 本文介绍了一种名为SYNTA的新方法,用于生成逼真的合成生物医学图像数据,以解决当前生成模型和基于深度学习的图像分析中的挑战 | SYNTA方法采用完全参数化的方法创建针对特定生物医学任务的逼真合成训练数据集,解决了现有生成模型缺乏代表性和高质量真实数据的问题 | 需要进一步验证SYNTA方法在其他生物医学领域的适用性和效果 | 旨在通过生成逼真的合成生物医学图像数据,改进和加速生物医学图像分析 | 肌肉组织病理学和骨骼肌分析 | 数字病理学 | NA | 深度学习和生成模型 | GAN, Diffusion Models | 图像 | 两个真实世界的数据集 |
10776 | 2025-03-10 |
Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations
2025-Mar-06, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-57516-z
PMID:40050630
|
研究论文 | 本文提出了一种多物理深度学习框架(MDLF),用于解决频率转移和多物理耦合问题,并在超表面设计中实现了未见频率段的预测 | 提出了结合多保真度DeepONet、欧拉潜在动态网络和数据解析反演网络的MDLF框架,能够在缺乏多物理响应知识的情况下,通过动态利用欧拉潜在空间和单物理信息,实现对未见频率段的预测 | 需要进一步验证在更广泛的多物理耦合场景下的适用性 | 解决频率转移问题,并实现超表面在未见频率段的多物理耦合预测 | 超表面 | 机器学习 | NA | 多物理深度学习框架(MDLF) | DeepONet, 欧拉潜在动态网络, 数据解析反演网络 | 频谱数据 | NA |
10777 | 2025-03-10 |
CUGUV: A Benchmark Dataset for Promoting Large-Scale Urban Village Mapping with Deep Learning Models
2025-Mar-06, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04701-w
PMID:40050634
|
研究论文 | 本文介绍了CUGUV基准数据集,旨在通过深度学习模型促进大规模城中村(UV)的映射 | 提出了一个包含来自中国15个主要城市的数千个UV样本的基准数据集,并开发了一个创新的框架,有效整合和学习了多种数据源,以更好地解决跨城市UV映射任务 | 数据集主要集中在中国的城市,可能限制了其全球适用性 | 提高大规模城中村映射的准确性和模型的可转移性 | 城中村(UV) | 计算机视觉 | NA | 深度学习 | NA | 卫星图像 | 数千个UV样本,来自中国15个主要城市 |
10778 | 2025-03-10 |
Systematic review and meta-analysis of artificial intelligence in classifying HER2 status in breast cancer immunohistochemistry
2025-Mar-06, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01483-8
PMID:40050686
|
meta-analysis | 本文通过诊断性meta分析评估了人工智能在分类HER2免疫组化评分中的表现,展示了其在预测T-DXd资格方面的高准确性 | 首次系统评估了人工智能在HER2免疫组化评分分类中的表现,并揭示了深度学习和基于补丁的分析方法在提高准确性方面的优势 | 在外部验证和使用商业化算法的研究中,AI的表现有所下降 | 评估人工智能在分类HER2免疫组化评分中的准确性和潜力 | 乳腺癌患者的HER2免疫组化评分 | digital pathology | breast cancer | 免疫组化(IHC) | 深度学习 | 图像 | NA |
10779 | 2025-03-10 |
Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering
2025-Jan-11, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85866-7
PMID:39799225
|
研究论文 | 本研究旨在通过结合机器学习和深度学习方法改进网络安全中的入侵检测 | 结合了多种机器学习(如SVM、KNN、RF、DT)和深度学习(如LSTM、ANN)模型,并引入了模糊聚类技术,以提高入侵检测的准确性和效率 | 未提及具体的样本大小或数据集细节,可能限制了结果的普适性 | 提高网络安全性,通过改进入侵检测系统(IDS)来识别和预防网络攻击 | 网络流量数据 | 机器学习 | NA | 模糊聚类 | SVM, KNN, RF, DT, LSTM, ANN | 网络流量数据 | NA |
10780 | 2025-03-10 |
Deep learning-driven ultrasound equipment quality assessment with ATS-539 phantom data
2025-Jan, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105698
PMID:39541619
|
研究论文 | 本研究提出了一种基于深度学习的双阶段框架,用于客观评估超声图像质量,使用ATS-539体模数据 | 引入双阶段深度学习框架,结合逻辑回归模型,实现超声图像质量的定量和客观评估 | 依赖于体模数据,可能无法完全反映真实临床环境中的图像质量 | 开发一种客观评估超声图像质量的方法,以提高诊断准确性 | 超声图像质量 | 计算机视觉 | NA | 深度学习 | 分类模型、逻辑回归模型 | 图像 | ATS-539体模数据 |