本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 11281 | 2025-06-18 |
Longitudinal analysis of coal workers' pneumoconiosis using enhanced resolution-computed tomography images: unveiling patterns in lung structure, function, and clinical correlations
2025, Frontiers in physiology
IF:3.2Q2
DOI:10.3389/fphys.2025.1578058
PMID:40519785
|
research paper | 该研究通过增强分辨率的CT图像纵向分析煤矿工人尘肺病的肺结构和功能变化,揭示其与临床数据的相关性 | 使用深度学习超分辨率模型增强CT图像,并结合非刚性图像配准技术量化肺区域变形,揭示了尘肺病进展中的结构和功能变化模式 | 样本量较小(仅31名前煤矿工人),且随访时间较短(1年) | 探索尘肺病患者肺结构和功能的纵向变化模式及其临床意义 | 31名前煤矿工人尘肺病患者 | digital pathology | lung disease | quantitative computed tomography (qCT), deep learning-based super-resolution, non-rigid image registration | deep learning super-resolution model | CT images | 31名尘肺病患者,随访1年 | NA | NA | NA | NA |
| 11282 | 2025-06-18 |
Smart wearable sensor-based model for monitoring medication adherence using sheep flock optimization algorithm-attention-based bidirectional long short-term memory (SFOA-Bi-LSTM)
2025 Jan-Dec, Digital health
IF:2.9Q2
DOI:10.1177/20552076251349692
PMID:40520140
|
research paper | 本研究提出了一种基于智能穿戴传感器的手势识别系统,用于预测药物依从性行为 | 引入了羊群优化算法-注意力机制的双向长短期记忆网络(SFOA-Bi-LSTM)模型,用于药物依从性监测 | 未提及具体样本量及数据来源的多样性限制 | 通过智能穿戴设备和深度学习技术监测和预测患者的药物依从性行为 | 患者的手势行为数据 | machine learning | NA | Z-score归一化方法,SFOA优化算法 | SFOA-Bi-LSTM | 传感器数据(加速度计和陀螺仪) | NA | NA | NA | NA | NA |
| 11283 | 2025-06-18 |
High-throughput alloy and process design for metal additive manufacturing
2025, npj computational materials
IF:9.4Q1
DOI:10.1038/s41524-025-01670-x
PMID:40520360
|
研究论文 | 本研究介绍了一种高通量计算框架,用于评估金属增材制造中的合金可打印性 | 集成了材料特性、加工参数和熔池轮廓,利用深度学习代理模型加速可打印性评估1000倍 | 需要进一步实验验证框架的普适性和准确性 | 开发高通量计算框架以优化金属增材制造的合金设计 | 金属合金,特别是等原子比CoCrFeMnNi系统和高熵合金Co-Cr-Fe-Mn-Ni空间 | 材料科学与工程 | NA | 深度学习 | 深度学习代理模型 | 材料属性和加工参数 | 等原子比CoCrFeMnNi系统和高熵合金Co-Cr-Fe-Mn-Ni空间 | NA | NA | NA | NA |
| 11284 | 2025-06-18 |
Evaluating the efficacy of bioelectrical impedance analysis using machine learning models for the classification of goats exposed to Haemonchosis
2025, Frontiers in veterinary science
IF:2.6Q1
DOI:10.3389/fvets.2025.1584828
PMID:40520424
|
研究论文 | 本研究评估了使用生物电阻抗分析(BIA)结合机器学习模型对感染血矛线虫病的山羊进行分类的效果 | 首次将BIA与多种机器学习模型结合,用于山羊血矛线虫病的非侵入性诊断 | 样本量较小(94只山羊),且仅针对西班牙雄山羊进行研究 | 开发一种可扩展、快速且非侵入性的诊断工具,用于监测小型反刍动物的健康状态 | 感染血矛线虫病的山羊 | 机器学习 | 寄生虫感染 | 生物电阻抗分析(BIA) | SVM, BPNN, K-NN, XGBoost, Keras | 生物电阻抗数据 | 94只西班牙雄山羊(58只健康,36只患病) | NA | NA | NA | NA |
| 11285 | 2025-06-18 |
Deep learning-based framework for Mycobacterium tuberculosis bacterial growth detection for antimicrobial susceptibility testing
2025, Computational and structural biotechnology journal
IF:4.4Q2
DOI:10.1016/j.csbj.2025.05.030
PMID:40520597
|
研究论文 | 开发了一个基于深度学习的框架TMAS,用于检测结核分枝杆菌的生长以进行抗菌药物敏感性测试 | 利用最先进的深度学习模型检测96孔微孔板图像中的细菌生长,显著提高了检测准确性和效率 | 对于生长缓慢或图像质量低的板可能存在检测困难 | 提高结核病药物敏感性测试的准确性和效率 | 结核分枝杆菌 | 数字病理 | 结核病 | 深度学习 | 深度学习模型 | 图像 | 4,018个板图像来自CRyPTIC数据集 | NA | NA | NA | NA |
| 11286 | 2025-06-18 |
Optimal Res-UNET architecture with deep supervision for tumor segmentation
2025, Frontiers in medicine
IF:3.1Q1
DOI:10.3389/fmed.2025.1593016
PMID:40520778
|
research paper | 该研究开发了一种优化的Res-UNET架构,结合深度监督技术,用于提高MRI数据集中脑肿瘤分割的准确性 | 提出了一种结合深度监督的优化Res-UNET架构,显著提高了分割精度并解决了数据不平衡和计算效率问题 | 未来研究应考虑优化U-Net变体在其他医学图像分割任务中的广泛应用 | 开发优化的Res-UNET架构以提高脑肿瘤在MRI图像中的分割准确性 | 脑肿瘤 | digital pathology | brain tumor | deep learning | Res-UNET | MRI images | BraTS 2018公共MRI数据集 | NA | NA | NA | NA |
| 11287 | 2025-06-18 |
Can artificial intelligence improve the diagnosis and prognosis of disorders of consciousness? A scoping review
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1608778
PMID:40520948
|
综述 | 本文通过范围综述探讨人工智能(AI)在意识障碍(DoC)诊断和预后中的作用 | 系统评估了机器学习和深度学习在意识障碍诊断和预后中的应用,并提出了标准化数据协议的需求 | 研究仅纳入21项符合条件的研究,样本量有限 | 探讨AI在意识障碍诊断和预后中的潜在作用 | 意识障碍(DoC)患者 | 机器学习 | 神经系统疾病 | 机器学习(ML)和深度学习(DL) | NA | NA | 21项研究涉及DoC受试者 | NA | NA | NA | NA |
| 11288 | 2025-06-18 |
Mapping football tactical behavior and collective dynamics with artificial intelligence: a systematic review
2025, Frontiers in sports and active living
IF:2.3Q2
DOI:10.3389/fspor.2025.1569155
PMID:40521408
|
系统综述 | 本文通过系统综述探讨了人工智能在足球战术行为、集体动态和运动模式分析中的应用现状 | 综述了基于人工智能的战术行为分析方法,包括多种神经网络、深度学习和机器学习技术,以及用于集体动态分析的图度量方法 | 人工智能技术在实践应用中仍面临挑战,包括伦理规范和需要结合体育科学、数据分析、计算机科学和教练专业知识的专业人才缺乏 | 探讨人工智能在足球战术行为和集体动态分析中的应用 | 足球比赛中的战术行为、集体动态和运动模式 | 计算机视觉 | NA | 人工神经网络、深度学习、机器学习、时间序列分析 | CNN, RNN, VRNN, VAE, XGBoost, 随机森林分类器等 | 时空追踪数据 | 从2548篇文章中筛选出32项研究进行综述 | NA | NA | NA | NA |
| 11289 | 2025-06-17 |
Attain: Inclusive annotated pavement distress types and severity dataset
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111715
PMID:40521146
|
研究论文 | 介绍了一个名为Attain的多样化、注释详尽的路面病害数据集,用于支持机器学习和深度学习模型在路面病害分类和目标检测中的开发 | 数据集包含10种不同的路面病害类别,每种病害还标注了低、中、高三个严重程度级别,且使用智能手机摄像头收集数据显著降低了数据收集成本 | 数据集仅包含2293张图像,可能不足以覆盖所有可能的路面条件和病害类型 | 促进自动路面病害检测系统的开发,以提高路面维护过程的效率和准确性 | 路面病害图像 | 计算机视觉 | NA | 智能手机摄像头图像采集 | NA | 图像 | 2293张图像,包含19,761个病害实例 | NA | NA | NA | NA |
| 11290 | 2025-10-06 |
A novel approach for estimating postmortem intervals under varying temperature conditions using pathology images and artificial intelligence models
2025-Jul, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-025-03447-9
PMID:40019556
|
研究论文 | 本研究提出了一种利用病理组织图像和人工智能模型在不同温度条件下估计死后间隔的新方法 | 首次将病理组织图像与人工智能相结合,开发出能够在三种不同温度条件下进行死后间隔估计的预测模型 | 模型在WSI级别的性能相对较低(AUC 0.800),且仅在三种特定温度条件下验证 | 开发准确可靠的死后间隔估计方法以支持法医调查 | 死后组织样本的病理图像 | 数字病理学 | 法医病理学 | 数字病理图像分析 | CNN | 图像 | 未明确说明样本数量 | 未明确说明 | ResNet50 | AUC | NA |
| 11291 | 2025-10-06 |
The impact of multi-modality fusion and deep learning on adult age estimation based on bone mineral density
2025-Jul, International journal of legal medicine
IF:2.2Q1
DOI:10.1007/s00414-025-03432-2
PMID:40100354
|
研究论文 | 本研究通过多模态融合和深度学习技术,基于骨密度数据提升成人年龄估计的准确性 | 首次将多模态融合策略与深度学习相结合应用于基于骨密度的年龄估计,显著提高了预测精度和泛化能力 | 研究数据主要来自中国人群,需要在其他种族群体中进行进一步验证 | 提高基于骨密度的成人年龄估计准确性 | 中国人群的CT扫描数据,包括腰椎、股骨和耻骨模态 | 医学影像分析 | 老年疾病 | CT扫描 | 深度学习 | 医学影像 | 4296个CT扫描用于训练,内部验证644个扫描,外部尸体验证351个扫描 | NA | NA | 平均绝对误差(MAE), 皮尔逊R² | NA |
| 11292 | 2025-10-06 |
Integration of metabolomics and machine learning for precise management and prevention of cardiometabolic risk in Asians
2025-Jul, Clinical nutrition (Edinburgh, Scotland)
DOI:10.1016/j.clnu.2025.05.011
PMID:40414052
|
研究论文 | 本文探讨如何整合代谢组学与机器学习技术,用于亚洲人群心血管代谢风险的精准管理与预防 | 首次系统整合代谢组学与机器学习技术,针对亚洲人群心血管代谢风险特征开发精准预防策略 | 存在跨种族结果解释困难、研究设计局限、分析平台变异性和数据处理方法不一致等挑战 | 开发针对亚洲人群心血管代谢疾病的精准预防和干预策略 | 亚洲人群的心血管代谢疾病风险 | 机器学习 | 心血管代谢疾病 | 代谢组学,多组学数据整合 | 深度学习 | 代谢组学数据 | NA | NA | NA | NA | NA |
| 11293 | 2025-06-17 |
A Deep Learning Model Based on High-Frequency Ultrasound Images for Classification of Different Stages of Liver Fibrosis
2025-Jul, Liver international : official journal of the International Association for the Study of the Liver
IF:6.0Q1
DOI:10.1111/liv.70148
PMID:40515461
|
研究论文 | 开发基于高频超声图像的深度学习模型,用于分类慢性乙型肝炎患者肝纤维化的不同阶段 | 使用高频超声图像训练深度学习模型,在肝纤维化分类中表现优于低频超声模型及其他非侵入性方法 | 回顾性多中心研究,可能存在选择偏倚 | 开发并评估基于高频超声图像的深度学习模型在肝纤维化分类中的诊断价值 | 慢性乙型肝炎患者 | 数字病理 | 肝纤维化 | 高频超声成像 | CNN | 图像 | 多中心研究,涉及六家医院2014年1月至2024年8月的患者数据 | NA | NA | NA | NA |
| 11294 | 2025-06-17 |
Artificial intelligence (AI) and CT in abdominal imaging: image reconstruction and beyond
2025-Jun-16, Abdominal radiology (New York)
DOI:10.1007/s00261-025-05031-6
PMID:40522387
|
综述 | 本文探讨了人工智能(AI)在腹部CT成像中的图像重建技术及其更广泛的应用 | 介绍了基于深度学习的重建(DLR)技术,该技术通过卷积神经网络生成高保真图像,克服了传统方法的噪声和人工纹理问题 | 临床验证、标准化和广泛采用方面仍存在挑战 | 探索AI驱动的CT图像重建在腹部成像中的原理、进展和未来方向 | 腹部器官(如肝脏、胰腺和肾脏)的CT成像 | 数字病理 | NA | 深度学习重建(DLR) | CNN | 图像 | NA | NA | NA | NA | NA |
| 11295 | 2025-10-06 |
Cyclic Peptide Therapeutic Agents Discovery: Computational and Artificial Intelligence-Driven Strategies
2025-Jun-12, Journal of medicinal chemistry
IF:6.8Q1
DOI:10.1021/acs.jmedchem.5c00712
PMID:40464341
|
综述 | 本文综述了计算方法和人工智能驱动策略在环肽治疗剂发现中的应用与进展 | 整合基于物理的模拟与深度学习技术,重新定义环肽治疗剂的设计和优化方法 | 面临肽段灵活性、数据可用性有限和复杂构象景观等挑战 | 推进环肽药物开发的精确性和效率,为未满足的医疗需求提供创新解决方案 | 环肽治疗剂 | 机器学习 | NA | 计算技术、人工智能方法、自动化合成平台 | 深度学习 | NA | NA | NA | NA | NA | NA |
| 11296 | 2025-06-17 |
A Deep Learning Model for Identifying the Risk of Mesenteric Malperfusion in Acute Aortic Dissection Using Initial Diagnostic Data: Algorithm Development and Validation
2025-Jun-10, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/72649
PMID:40493909
|
研究论文 | 开发并验证了一种深度学习模型,用于识别急性主动脉夹层患者中肠系膜灌注不良的高风险 | 整合了多模态数据(实验室参数和CT血管造影图像)的深度学习模型,相比单模态方法具有更高的诊断准确性 | 需要进一步的前瞻性验证以确认其临床实用性 | 开发一种深度学习模型,用于早期识别急性主动脉夹层患者中肠系膜灌注不良的高风险 | 急性主动脉夹层患者 | 数字病理 | 心血管疾病 | CT血管造影 | 深度学习模型 | 图像和临床数据 | 525名患者(450名来自北京安贞医院,75名来自南京鼓楼医院) | NA | NA | NA | NA |
| 11297 | 2025-10-06 |
Photodiagnosis with deep learning: A GAN and autoencoder-based approach for diabetic retinopathy detection
2025-Jun, Photodiagnosis and photodynamic therapy
IF:3.1Q2
DOI:10.1016/j.pdpdt.2025.104552
PMID:40064432
|
研究论文 | 提出一种结合GAN数据增强、去噪自编码器和迁移学习的深度学习框架用于糖尿病视网膜病变检测 | 首次将GAN、去噪自编码器和EfficientNetB0集成到一个统一框架中,有效解决数据不平衡和噪声问题 | 未集成可解释性工具,未来需要探索更多成像模态以提高泛化能力 | 开发高性能的糖尿病视网膜病变自动诊断系统 | 视网膜图像 | 计算机视觉 | 糖尿病视网膜病变 | OCT成像 | GAN, Autoencoder, CNN | 图像 | 自定义整理的OCT数据集 | TensorFlow, PyTorch | EfficientNetB0 | 准确率, 召回率, 特异性 | NA |
| 11298 | 2025-10-06 |
Thorax-encompassing multi-modality PET/CT deep learning model for resected lung cancer prognostication: A retrospective, multicenter study
2025-Jun, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17862
PMID:40317503
|
研究论文 | 开发一种融合PET/CT影像与临床病理信息的多模态深度学习模型,用于预测非小细胞肺癌术后无复发生存期 | 首个结合多模态影像(FDG PET/CT)与临床、手术、病理信息预测NSCLC预后的深度学习模型,能够超越传统分期系统进行风险分层 | 回顾性研究设计,样本量相对有限(总样本500例),需要前瞻性验证 | 开发优于传统分期的预后预测模型,识别可能从辅助治疗中获益的高风险患者 | 手术切除的非小细胞肺癌患者 | 数字病理 | 肺癌 | FDG PET/CT影像 | 深度学习模型 | 医学影像(PET/CT)、临床数据、病理数据、手术数据 | 500例患者(本地机构305例,外部验证195例) | NA | 多模态深度学习模型 | AUC, Kaplan-Meier曲线, log-rank检验 | NA |
| 11299 | 2025-10-06 |
A multi-model deep learning approach for the identification of coronary artery calcifications within 2D coronary angiography images
2025-Jun, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03382-5
PMID:40341465
|
研究论文 | 开发了一种基于多模型深度学习的工作流程,用于在二维冠状动脉造影图像中识别冠状动脉钙化 | 首次提出用于辅助识别2DCA中冠状动脉钙化的临床决策支持系统,结合了ResNet-18分类主干和U-Net解码器的多阶段架构 | 样本量较小(14名患者的44次图像采集),分割性能仍有提升空间 | 开发辅助临床医生识别冠状动脉钙化的自动化工具 | 二维冠状动脉造影图像中的冠状动脉钙化区域 | 计算机视觉 | 心血管疾病 | 二维冠状动脉造影 | CNN | 医学图像 | 14名患者的44次图像采集 | PyTorch | ResNet-18, U-Net | F1-score, IoM | NA |
| 11300 | 2025-10-06 |
AttentionAML: An Attention-based Deep Learning Framework for Accurate Molecular Categorization of Acute Myeloid Leukemia
2025-May-22, bioRxiv : the preprint server for biology
DOI:10.1101/2025.05.20.655179
PMID:40475602
|
研究论文 | 提出一种基于注意力机制的深度学习框架,用于急性髓系白血病的精确分子分型 | 开发了首个基于注意力机制的深度学习框架,仅使用转录组数据进行AML亚型分类 | NA | 准确分类急性髓系白血病亚型以支持临床管理和个性化治疗 | 急性髓系白血病患者 | 机器学习 | 急性髓系白血病 | 转录组分析 | 注意力机制深度学习 | 转录组数据 | 1,661名AML患者 | Python | 注意力机制 | 准确率,精确率,召回率,F1分数,马修斯相关系数 | NA |