深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 11877 篇文献,本页显示第 11601 - 11620 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
11601 2025-01-06
Automated CAD system for early detection and classification of pancreatic cancer using deep learning model
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于深度学习的自动化计算机辅助诊断系统,用于早期检测和分类胰腺癌 提出了一个四阶段的计算机辅助诊断系统框架,包括预处理、分割、检测和分类阶段,并使用改进的11层AlexNet模型进行分类 未提及样本的具体数量和多样性,可能影响模型的泛化能力 开发一个自动化系统,用于早期检测和分类胰腺癌 胰腺癌的CT扫描图像 计算机视觉 胰腺癌 深度学习 U-Net, AlexNet 图像 NA
11602 2025-01-06
A weak edge estimation based multi-task neural network for OCT segmentation
2025, PloS one IF:2.9Q1
研究论文 本文提出了一种基于弱边缘估计的多任务神经网络(MTAMNP),用于光学相干断层扫描(OCT)图像的分割 引入了多任务注意力机制网络(MTAMNP),包含分割分支和边界回归分支,利用自适应加权损失函数提高模型对弱边缘细节的保留能力,并提出基于通道注意力的结构化剪枝方法以减少参数数量并防止过拟合 未明确提及具体局限性 解决OCT图像分割中弱边缘敏感性和标注数据不足导致的过拟合问题 光学相干断层扫描(OCT)图像 计算机视觉 眼科疾病 深度学习 多任务注意力机制网络(MTAMNP) 图像 两个公开数据集(HCMS和Duke数据集)
11603 2025-01-06
Automatic tumor segmentation and lymph node metastasis prediction in papillary thyroid carcinoma using ultrasound keyframes
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种全自动深度学习模型(FADLM),用于在甲状腺乳头状癌(PTC)中使用超声关键帧进行自动肿瘤分割和颈部淋巴结转移(LNM)预测 创新点在于整合了Mask R-CNN用于自动甲状腺原发肿瘤分割,并结合ResNet34和贝叶斯策略进行颈部LNM诊断,显著提高了预测性能 研究样本量相对较小,且仅在两所医院进行验证,可能影响模型的泛化能力 建立一种全自动深度学习模型,用于甲状腺乳头状癌的术前颈部淋巴结转移预测 518名甲状腺乳头状癌患者 数字病理 甲状腺癌 超声关键帧分析 Mask R-CNN, ResNet34 超声视频关键帧 518名患者(340名训练集,83名内部测试集,95名外部测试集)
11604 2025-01-06
Diffusion network with spatial channel attention infusion and frequency spatial attention for brain tumor segmentation
2025-Jan, Medical physics IF:3.2Q1
研究论文 本文提出了一种结合空间通道注意力注入(SCAI)模块和频率空间注意力(FSA)机制的条件扩散网络(SF-Diff),用于精确分割脑肿瘤的整个肿瘤(WT)区域 提出了一个条件扩散网络(SF-Diff),结合了空间通道注意力注入(SCAI)模块和频率空间注意力(FSA)机制,以改进脑肿瘤分割的边界轮廓和准确性 目前的方法主要针对整个肿瘤区域的分割,未来需要进一步扩展到脑肿瘤的三类分割任务 提高脑肿瘤分割的准确性,特别是在边界轮廓和非连续病变区域 脑肿瘤的整个肿瘤(WT)区域 计算机视觉 脑肿瘤 扩散模型 条件扩散网络(SF-Diff) 多模态MRI图像 369例患者数据,来自Multimodal BraTS Challenge 2020(BraTS2020)
11605 2025-01-05
Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification
2025-Dec, Health information science and systems IF:4.7Q1
研究论文 本文提出了一种名为Csec-net的新方法,用于白血病的计算机辅助诊断,通过深度学习特征融合和熵控制的萤火虫特征选择框架实现 提出了一种新的深度学习特征融合策略和熵控制的萤火虫特征选择技术,用于白血病分类 未提及具体局限性 开发和评估深度学习方法以实现计算机辅助的白血病诊断 白血病患者的血液样本图像 计算机视觉 白血病 深度学习 MobileNetV2, EfficientNetB0, ConvNeXt-V2, EfficientNetV2, DarkNet-19, 多类支持向量机 图像 15562张图像,来自四个数据集:ALLID_B1, ALLID_B2, C_NMC 2019, ASH
11606 2025-01-05
DEELE-Rad: exploiting deep radiomics features in deep learning models using COVID-19 chest X-ray images
2025-Dec, Health information science and systems IF:4.7Q1
研究论文 本文提出了一种名为DEELE-Rad的方法,通过深度学习模型提取深度放射组学特征,用于COVID-19胸部X光图像的分类,并提供了可视化的解释以支持决策 结合深度学习和机器学习技术,利用迁移学习从ImageNet中提取深度放射组学特征,并通过自动参数调整和交叉验证策略优化分类器性能 未提及具体的数据集规模或多样性限制,可能影响模型的泛化能力 开发一种基于深度学习的放射组学方法,用于COVID-19胸部X光图像的分类,以辅助医疗决策 COVID-19患者的胸部X光图像 计算机视觉 COVID-19 深度学习、迁移学习 VGG16, ResNet50V2, DenseNet201 图像 未提及具体样本数量
11607 2025-01-05
Throw out an oligopeptide to catch a protein: Deep learning and natural language processing-screened tripeptide PSP promotes Osteolectin-mediated vascularized bone regeneration
2025-Apr, Bioactive materials IF:18.0Q1
研究论文 本文利用深度学习和自然语言处理技术筛选出一种三肽PSP,该肽能够促进血管化骨再生,并通过激活Osteolectin介导的血管-骨通讯来增强骨髓干细胞的成骨分化 结合深度学习和自然语言处理技术,开发了一种新的算法来筛选潜在的促血管生成肽,特别是从262个相关蛋白的内在无序区域中筛选出具有生物活性的三肽PSP 研究主要基于小鼠模型,尚未在人体中进行验证 开发一种更安全、更有效的替代传统细胞因子疗法的方法,以促进血管化骨再生 三肽PSP及其在血管化骨再生中的作用 自然语言处理 骨再生 深度学习(DL)、自然语言处理(NLP) 复合模型(DL和NLP结合) 蛋白质序列数据 262个相关蛋白的内在无序区域
11608 2025-01-05
Deep learning-enabled filter-free fluorescence microscope
2025-Jan-03, Science advances IF:11.7Q1
研究论文 本文介绍了一种基于深度学习的无滤光片荧光显微镜成像技术,通过数字光谱滤波实现荧光通道的自动选择和荧光预测 创新点在于利用深度学习技术替代传统光学滤光片,实现荧光显微镜的无滤光片成像,降低了系统的复杂性和成本 未提及具体的技术限制或实验中的不足 研究目标是开发一种无滤光片的荧光显微镜成像技术,以提高多荧光通道高速成像的适用性 研究对象是使用不同荧光标记的细胞和组织 计算机视觉 NA 深度学习 NA 图像 未提及具体样本数量
11609 2025-01-05
D3-ImgNet: A Framework for Molecular Properties Prediction Based on Data-Driven Electron Density Images
2025-Jan-03, The journal of physical chemistry. A
研究论文 本文提出了一种基于数据驱动电子密度图像的分子性质预测框架D3-ImgNet,结合了群论、密度泛函理论、深度学习技术和多目标优化机制 D3-ImgNet框架不仅实现了高精度的分子性质预测,还结合了物理机制的指导,体现了数据分析与系统优化的方法论融合 未明确提及具体局限性 预测分子性质,加速功能材料的高通量筛选 分子性质,包括原子化能、偶极矩、力和S2化学反应的最小能量路径 量子化学与材料科学 NA 深度学习,密度泛函理论,多目标优化 D3-ImgNet 电子密度图像 QM9数据集和QM9X数据集,以及S2反应数据集
11610 2025-01-05
Combining the Variational and Deep Learning Techniques for Classification of Video Capsule Endoscopic Images
2025-Jan-03, Journal of imaging informatics in medicine
研究论文 本文提出了一种结合变分模型和深度学习技术的框架,用于视频胶囊内窥镜图像的多类分类 该框架利用分数阶变分模型捕捉图像的动态信息,并结合深度学习模型进行多类分类和感兴趣区域的定位 NA 开发一种自动化计算机辅助病变分类技术,以提高胃肠道异常检测率 视频胶囊内窥镜图像 计算机视觉 胃肠道相关癌症 深度学习(DL) Faster RCNN, EfficientNet B0 图像 NA
11611 2025-01-05
A joint analysis of single cell transcriptomics and proteomics using transformer
2025-Jan-02, NPJ systems biology and applications IF:3.5Q1
研究论文 本文提出了一种基于Transformer编码器层的深度学习框架scTEL,用于从单细胞RNA测序数据预测未观察到的蛋白质表达 scTEL模型提供了一个统一的框架,可以整合多个CITE-seq数据集,解决了不同数据集间蛋白质面板部分重叠的挑战 依赖于公开的CITE-seq数据集进行验证,可能限制了模型的广泛适用性 通过计算方式显著降低蛋白质表达测序的实验成本 单细胞RNA和蛋白质表达数据 机器学习 NA CITE-seq, scRNA-seq Transformer 单细胞RNA测序数据 公共CITE-seq数据集
11612 2025-01-05
Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer
2025, Oncology research IF:2.0Q3
研究论文 本研究利用深度学习技术识别了三阴性乳腺癌中新的自噬相关蛋白-蛋白相互作用,并通过实验验证了Beclin 2与Ubiquilin 1轴的作用 开发了三种PPI分类模型,分析了超过13,000个数据集,识别了3733个以前未知的自噬相关PPI,并揭示了Beclin 2在自噬调控中的核心作用 研究主要基于体外实验,需要进一步的体内实验验证 揭示三阴性乳腺癌中自噬相关蛋白-蛋白相互作用,寻找新的治疗靶点 三阴性乳腺癌细胞MDA-MB-231 机器学习 乳腺癌 免疫沉淀-质谱分析、分子对接、CO-IP实验 Naive Bayes, Decision Tree, k-Nearest Neighbors 蛋白质相互作用数据 超过13,000个数据集
11613 2025-01-05
Deep Learning-Based Prediction of Freezing of Gait in Parkinson's Disease With the Ensemble Channel Selection Approach
2025-Jan, Brain and behavior IF:2.6Q3
研究论文 本文提出了一种基于深度学习的算法,用于检测帕金森病患者的步态冻结(FoG)事件,通过集成通道选择方法提高检测效率 提出了一种新颖的架构,将瓶颈注意力模块集成到标准的双向长短期记忆网络(BiLSTM)中,形成卷积瓶颈注意力-BiLSTM(CBA-BiLSTM),并通过集成学习选择最优通道,显著提高了检测性能 NA 开发一种高效、准确的算法,用于检测帕金森病患者的步态冻结事件 帕金森病患者的步态冻结事件 机器学习 帕金森病 NA 卷积瓶颈注意力-BiLSTM(CBA-BiLSTM) 运动信号数据 NA
11614 2025-01-05
Hybrid Model with Wavelet Decomposition and EfficientNet for Accurate Skin Cancer Classification
2025, Journal of Cancer IF:3.3Q2
研究论文 本文提出了一种结合小波分解和EfficientNet的混合模型,用于准确分类皮肤癌 创新性地结合了小波分解和EfficientNet模型,并引入了先进的数据增强、损失函数和优化策略 未提及具体局限性 提高皮肤疾病的检测和分类准确性 皮肤疾病图像 计算机视觉 皮肤癌 小波分解 EfficientNet 图像 HAM10000和ISIC2017数据集
11615 2025-01-04
An efficient deep learning method for amino acid substitution model selection
2025-Jan-03, Journal of evolutionary biology IF:2.1Q3
研究论文 本文提出了一种基于深度学习的氨基酸替换模型选择方法,旨在提高模型选择的效率和准确性 提出了一种名为ModelDetector的深度学习网络,用于从蛋白质比对中检测氨基酸替换模型,显著提高了计算效率 实验数据主要基于模拟数据,尚未在真实基因组数据上进行广泛验证 研究目的是开发一种高效的氨基酸替换模型选择方法,以替代传统的最大似然方法 氨基酸替换模型 机器学习 NA 深度学习 ModelDetector 蛋白质比对数据 2,246,400个比对
11616 2025-01-04
Prediction of vitreomacular traction syndrome outcomes with deep learning: A pilot study
2025-Jan, European journal of ophthalmology IF:1.4Q3
研究论文 本研究探讨了基于光学相干断层扫描(OCT)的深度学习模型在预测玻璃体黄斑牵引综合征(VMT)结果中的潜力 首次使用深度学习模型预测VMT的结果,并在真实世界环境中验证其应用潜力 样本量较小(95名患者),且为单中心回顾性研究,可能需要更大规模和多中心研究来验证结果 研究深度学习模型在预测VMT结果中的应用 患有自发性VMT的成年患者 数字病理学 眼科疾病 光学相干断层扫描(OCT) 深度学习模型 图像 95名患者的OCT扫描数据
11617 2025-01-04
Leveraging Artificial Intelligence/Machine Learning Models to Identify Potential Palliative Care Beneficiaries: A Systematic Review
2025-Jan, Journal of gerontological nursing IF:1.1Q3
系统综述 本文综述了人工智能(AI)和机器学习(ML)技术在姑息护理中的应用,特别是用于识别慢性病和绝症患者中可能受益于姑息服务的人群 本文首次系统性地评估了AI/ML模型在姑息护理中的应用,特别是用于预测相关结果如死亡率或服务需求 仅筛选了四电子数据库中的1504项研究,最终仅纳入五项研究,样本量有限 探讨AI/ML技术在姑息护理中的应用,特别是用于识别潜在受益者 慢性病和绝症患者 机器学习 老年疾病 AI/ML模型 神经网络模型、逻辑回归、树模型 NA 五项研究
11618 2025-01-03
DeepPhoPred: Accurate Deep Learning Model to Predict Microbial Phosphorylation
2025-Feb, Proteins IF:3.2Q2
研究论文 本文介绍了一种名为DeepPhoPred的深度学习工具,用于预测微生物的磷酸化位点 DeepPhoPred采用了一种双头卷积神经网络架构,结合了挤压和激励模块,能够从肽的结构和进化信息中联合学习重要特征,以预测磷酸化位点 NA 开发一种低成本、高速度的计算方法来预测微生物的磷酸化位点 微生物的磷酸化位点 机器学习 NA 深度学习 CNN 肽的结构和进化信息 NA
11619 2025-01-03
Deep Learning-Based SD-OCT Layer Segmentation Quantifies Outer Retina Changes in Patients With Biallelic RPE65 Mutations Undergoing Gene Therapy
2025-Jan-02, Investigative ophthalmology & visual science IF:5.0Q1
研究论文 本文利用深度学习技术对RPE65基因突变患者的视网膜外层结构变化进行量化分析,并定义了新的生物标志物 首次应用深度学习技术对RPE65基因突变患者的视网膜外层进行自动分割,并定义了五个新的生物标志物 数据集较小,且近视可能对OCT扫描结果产生影响 量化RPE65基因突变患者在基因治疗前后视网膜外层结构的变化,并定义新的生物标志物 RPE65基因突变患者和健康对照组 数字病理学 视网膜退行性疾病 深度学习 NA 图像 22名RPE65基因突变患者和94名健康对照
11620 2025-01-03
Deep Learning Model Using Stool Pictures for Predicting Endoscopic Mucosal Inflammation in Patients With Ulcerative Colitis
2025-Jan-01, The American journal of gastroenterology
研究论文 本文开发了一种使用溃疡性结肠炎患者粪便照片的深度学习模型,用于预测内镜下黏膜炎症 首次使用深度学习模型通过粪便照片预测溃疡性结肠炎的内镜下黏膜炎症 研究未涉及直肠保留病例的预测效果 开发一种通过粪便照片预测溃疡性结肠炎内镜下黏膜炎症的深度学习模型 溃疡性结肠炎患者 数字病理学 溃疡性结肠炎 深度学习 深度学习模型 图像 306名患者的2161张粪便照片用于模型开发,126名患者的1047张粪便照片用于测试
回到顶部