本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12181 | 2025-04-02 |
Predictive modeling of air quality in the Tehran megacity via deep learning techniques
2025-01-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84550-6
PMID:39779721
|
研究论文 | 本研究利用深度学习技术预测德黑兰大都市区的空气质量,并评估其相对于传统机器学习方法的有效性 | 深度学习模型(如GRU、FCNN和CNN)在预测空气污染物浓度方面表现优于传统机器学习方法,特别是在CO、O、NO、SO、PM等污染物的预测上 | 研究仅针对德黑兰大都市区,可能无法直接推广到其他地区 | 预测德黑兰大都市区的空气污染物浓度,为空气质量控制策略提供决策支持 | 德黑兰大都市区的空气污染物(CO、O、NO、SO、PM等) | 机器学习 | NA | 深度学习 | GRU、FCNN、CNN | 时间序列数据 | 2013年至2023年的空气污染物数据 |
12182 | 2025-04-02 |
The analysis of dance teaching system in deep residual network fusing gated recurrent unit based on artificial intelligence
2025-01-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85407-2
PMID:39779733
|
研究论文 | 本研究探讨了如何利用深度学习和人工智能技术提升舞蹈教学的智能化水平,开发了一种基于图注意力机制和双向门控循环单元的舞蹈动作识别与反馈模型 | 结合3D-ResNet、BiGRU和图注意力机制,动态调整节点权重以优化动作识别性能,在NTU-RGBD60数据集上准确率比现有3D-CNN基线算法提高5%以上 | 未提及模型在其他舞蹈数据集上的泛化能力测试 | 提升舞蹈教学的智能化水平,为舞蹈教育提供高效个性化的技术支持 | 舞蹈动作识别与反馈系统 | 计算机视觉 | NA | 深度学习 | 3D-ResNet-BiGRU结合图注意力机制 | 视频 | NTU-RGBD60数据集(具体数量未说明) |
12183 | 2025-04-02 |
Uncertainty-aware diabetic retinopathy detection using deep learning enhanced by Bayesian approaches
2025-01-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84478-x
PMID:39779778
|
research paper | 本研究提出了一种基于贝叶斯方法增强的深度学习模型,用于糖尿病视网膜病变检测,并评估了不确定性估计在临床决策中的价值 | 结合贝叶斯近似方法(如蒙特卡洛Dropout、均值场变分推断和确定性推断)增强DenseNet-121模型,不仅提高了分类准确性,还提供了预测不确定性的量化指标 | 研究仅针对糖尿病视网膜病变,未验证模型在其他医学影像分析任务中的泛化能力 | 开发一种能够提供不确定性估计的深度学习模型,以提高糖尿病视网膜病变检测的可靠性和临床决策的信任度 | 糖尿病视网膜病变的医学影像 | digital pathology | diabetic retinopathy | Bayesian approximation techniques (Monte Carlo Dropout, Mean Field Variational Inference, Deterministic Inference) | DenseNet-121 (CNN) with Bayesian extensions | image | combined dataset (APTOS 2019 + DDR) with pre-processed images |
12184 | 2025-04-02 |
A hybrid CNN model for classification of motor tasks obtained from hybrid BCI system
2025-01-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84883-2
PMID:39779796
|
研究论文 | 本文提出了一种混合CNN模型,用于分类从混合脑机接口系统获取的运动任务 | 结合EEG和fNIRS两种非侵入性BCI模块,提高了多类数据的分类性能 | NA | 评估深度学习方法在分类四类运动执行任务中的性能 | 从CORE数据集中获取的右手、左手、右臂和左臂的运动执行任务 | 脑机接口 | NA | EEG, fNIRS | CNN, Bi-LSTM, 混合CNN模型 | 脑电信号 | NA |
12185 | 2025-04-02 |
Attention-based deep learning for accurate cell image analysis
2025-01-08, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-85608-9
PMID:39779905
|
research paper | 介绍了一种名为X-Profiler的新型高内涵分析方法,结合了细胞实验、图像处理和深度学习建模,用于准确的细胞图像分析 | X-Profiler结合了CNN和Transformer来编码高内涵图像,有效过滤噪声信号并精确表征细胞表型 | NA | 提高细胞图像分析的准确性,推动药物开发和疾病研究 | 细胞图像 | digital pathology | cardiovascular disease | high-content analysis (HCA) | CNN, Transformer | image | NA |
12186 | 2025-04-02 |
SRADHO: statistical reduction approach with deep hyper optimization for disease classification using artificial intelligence
2025-01-07, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-82838-1
PMID:39774278
|
研究论文 | 提出了一种结合统计降维和深度超参数优化的方法(SRADHO),用于改进疾病分类的特征选择和模型性能 | 结合深度学习和超参数调优,通过贝叶斯优化方法自动选择最相关特征,优化模型准确性并降低维度 | 仅使用了三个基准数据集进行实验,可能在其他数据集上的泛化能力有限 | 提高疾病分类的准确性和效率,减少过拟合和欠拟合问题 | 脑部相关疾病 | 机器学习 | 脑部疾病 | 深度学习,贝叶斯优化 | 人工神经网络,逻辑回归,决策树,随机森林,K近邻,支持向量机,朴素贝叶斯 | 医学数据 | 三个基准数据集 |
12187 | 2025-04-02 |
Assessment of simulated snoring sounds with artificial intelligence for the diagnosis of obstructive sleep apnea
2025-01, Sleep medicine
IF:3.8Q1
DOI:10.1016/j.sleep.2024.11.018
PMID:39566267
|
研究论文 | 本研究利用人工智能模型分析模拟打鼾声音,以诊断阻塞性睡眠呼吸暂停(OSA) | 首次验证了深度学习模型在利用模拟打鼾声音诊断OSA方面的优越性能 | 研究样本量有限(465名参与者),且仅在一个睡眠中心进行 | 验证人工智能模型利用模拟打鼾声音诊断OSA的性能 | 阻塞性睡眠呼吸暂停(OSA)患者 | 机器学习 | 阻塞性睡眠呼吸暂停 | Python音频数据处理 | 支持向量机(SVM)、K近邻(KNN)、随机森林(RF)、音频频谱变换器(AST) | 音频 | 465名参与者 |
12188 | 2025-04-02 |
Correction: Secure deep learning for distributed data against malicious central server
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0318164
PMID:39847555
|
correction | 对先前发表的文章进行更正 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
12189 | 2025-04-02 |
Clinical validation of an artificial intelligence algorithm for classifying tuberculosis and pulmonary findings in chest radiographs
2025, Frontiers in artificial intelligence
IF:3.0Q2
DOI:10.3389/frai.2025.1512910
PMID:39991462
|
research paper | 本研究评估了一种基于CNN的AI算法在解读胸部X光片(CXR)中的性能,并与包括胸科放射科医生在内的医师团队进行比较 | 使用真实世界数据验证AI算法在多样化医疗环境中的有效性,并比较AI与不同经验水平医师的表现 | 研究为回顾性设计,且医师报告算法在大多数情况下未影响其决策 | 评估AI算法在胸部X光片解读中的性能及其对非胸科放射专科医师的辅助作用 | 胸部X光片及参与解读的医师团队 | digital pathology | tuberculosis | deep learning | CNN | image | NA |
12190 | 2025-04-01 |
Artificial intelligence in emergency neuroradiology: Current applications and perspectives
2025-Apr, Diagnostic and interventional imaging
IF:4.9Q1
DOI:10.1016/j.diii.2024.11.002
PMID:39672753
|
综述 | 本文综述了人工智能在急诊神经放射学中的当前应用及未来展望 | 提供了关于人工智能在急诊神经放射学中应用的最新进展和深度分析,包括多种成像模态和现有商业产品的描述 | 未提及具体的技术局限性,但呼吁更多基于临床需求的开发和儿科神经影像学的关注 | 探讨人工智能在急诊神经放射学中的应用现状和未来发展 | 急诊神经放射学中的急性缺血性卒中、颅内出血、颅内动脉瘤、动静脉畸形等疾病 | 数字病理学 | 脑血管疾病 | 机器学习和深度学习算法 | NA | 影像数据 | NA |
12191 | 2025-04-01 |
Digital twin-assisted graph matching multi-task object detection method in complex traffic scenarios
2025-Mar-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-87914-8
PMID:40155390
|
研究论文 | 提出一种基于数字孪生的跨领域目标检测迁移方法,以解决交通数据收集和标注耗时耗力的问题 | 结合数字孪生技术构建虚拟交通场景数据集,并引入基于图匹配的多任务目标检测算法,通过注意力机制和对抗训练提升模型鲁棒性 | 未提及实际部署中的计算资源消耗和实时性表现 | 提升复杂交通场景下的目标检测性能 | 虚拟和真实交通场景中的目标物体 | 计算机视觉 | NA | 数字孪生、对抗训练 | 多任务网络、图匹配模块 | 图像 | 未明确说明具体样本数量,包含虚拟生成和真实交通数据集 |
12192 | 2025-04-01 |
Synthesize multiple V/H directional beams for high altitude platform station based on deep-learning algorithm
2025-Mar-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-93251-7
PMID:40155442
|
研究论文 | 本文研究了将高空平台站(HAPS)与深度学习(DL)模型相结合以增强覆盖能力的方法 | 提出了一种基于60单元同心圆阵列(CCA)和深度神经网络(DNN)与改进的引力搜索算法和粒子群优化(MGSA-PSO)算法的混合方法,以动态生成多方向垂直/水平(V/H)波束 | 未提及具体实验验证或实际部署的挑战 | 增强高空平台站(HAPS)的覆盖能力,特别是在复杂地形下的道路路径覆盖 | 高空平台站(HAPS)及其波束形成系统 | 机器学习 | NA | 深度神经网络(DNN)、改进的引力搜索算法和粒子群优化(MGSA-PSO)算法 | DNN | 仿真数据 | 使用计算机仿真技术-微波工作室套件(CST)与地球探索者(EE)用户界面工具模拟真实道路路径 |
12193 | 2025-04-01 |
The value of predicting breast cancer with a DBT 2.5D deep learning model
2025-Mar-29, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02170-6
PMID:40155449
|
research paper | 评估基于数字乳腺断层合成(DBT)的2.5维深度学习模型在预测乳腺癌中的准确性和有效性 | 结合2.5维特征集和临床数据构建综合预测模型,展示深度学习与放射组学结合在乳腺癌早期诊断中的潜力 | 研究基于回顾性数据,样本量相对较小(361例),可能影响模型的泛化能力 | 提高乳腺癌术前预测的准确性 | 乳腺癌肿瘤病变患者 | digital pathology | breast cancer | digital breast tomosynthesis (DBT) | DCNN, logistic regression, LightGBM, multilayer perceptron | image | 361例乳腺癌患者(2018-2020年山东第一医科大学附属山东省立医院数据) |
12194 | 2025-04-01 |
Deep Learning Electrocardiogram Model for Risk Stratification of Coronary Revascularization Need in the Emergency Department
2025-Mar-29, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehaf254
PMID:40156923
|
research paper | 开发了一种深度学习模型,用于通过心电图(ECG)识别需要冠状动脉血运重建的急性冠状动脉综合征患者 | 使用卷积神经网络(CNN)模型从心电图中检测与血运重建可能性相关的模式,以指导进一步评估并减少诊断不确定性 | 模型的特异性较高但敏感性较低,相比高敏肌钙蛋白T(hs-TnT) | 识别需要冠状动脉血运重建的急性冠状动脉综合征患者,以减少诊断不确定性 | 急诊科就诊患者的心电图数据 | machine learning | cardiovascular disease | electrocardiogram (ECG) | CNN | ECG data | 训练集:144,691次急诊就诊;测试集:35,995次;外部验证集:18,673次急诊就诊 |
12195 | 2025-04-01 |
A DEM super resolution reconstruction method based on normalizing flow
2025-Mar-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-94274-w
PMID:40148492
|
research paper | 提出一种基于归一化流的DEM超分辨率重建方法,通过可逆网络模型学习高分辨率DEM的条件分布 | 首次将归一化流引入DEM超分辨率重建,通过可逆网络模型显式建模高分辨率DEM的条件分布 | 未讨论模型在极端地形条件下的表现 | 解决DEM超分辨率重建中的模糊和伪影问题 | 数字高程模型(DEM)图像 | computer vision | NA | 归一化流(normalizing flow) | 可逆网络模型 | DEM图像 | 未明确说明样本数量 |
12196 | 2025-04-01 |
Effects of a deep learning-based image quality enhancement method on a digital-BGO PET/CT system for 18F-FDG whole-body examination
2025-Mar-28, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-025-00742-7
PMID:40148660
|
research paper | 本研究评估了数字BGO PET/CT系统中基于深度学习的图像质量增强方法(PDL)对18F-FDG全身检查的影响 | 结合BSREM图像重建和深度学习的TOF-like图像质量增强过程(PDL),显著提高了图像质量和病变的SUVmax | 研究仅基于Omni Legend 32 PET/CT系统,结果可能不适用于其他系统 | 评估PDL在数字BGO PET/CT系统中的基本特性和对图像质量的影响 | NEMA IEC体模和30例临床全身18F-FDG PET/CT检查 | digital pathology | NA | PET/CT成像,深度学习图像增强 | 深度学习(PDL) | 图像 | 30例临床全身18F-FDG PET/CT检查 |
12197 | 2025-04-01 |
UrbanEV: An Open Benchmark Dataset for Urban Electric Vehicle Charging Demand Prediction
2025-Mar-28, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04874-4
PMID:40155635
|
research paper | 介绍了一个名为UrbanEV的开放数据集,用于预测城市电动汽车充电需求 | 提供了首个涵盖充电站占用率、时长、用电量和价格等多维度数据的开放数据集,并包含天气和空间邻近性等影响因素 | 数据仅来自深圳一个城市,可能无法完全代表其他地区的充电需求模式 | 推动电动汽车充电需求预测和管理的研究 | 电动汽车充电站 | machine learning | NA | NA | 统计模型、深度学习和基于transformer的方法 | 时间序列数据 | 超过20,000个充电站,时间跨度为六个月 |
12198 | 2025-04-01 |
An optimized deep learning based hybrid model for prediction of daily average global solar irradiance using CNN SLSTM architecture
2025-Mar-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95118-3
PMID:40155655
|
研究论文 | 本研究开发了一种结合CNN和SLSTM的混合深度学习模型,用于预测每日平均全球太阳辐照度 | 提出了一种结合CNN和SLSTM的混合模型,并使用黏菌优化算法优化超参数,提高了预测精度 | 未提及模型在其他地理区域的泛化能力 | 开发高精度的太阳辐照度预测模型以优化光伏系统并网 | 每日平均全球太阳辐照度 | 机器学习 | NA | 递归特征消除技术、十倍交叉验证技术 | CNN-SLSTM | 气象参数和太阳辐照度数据 | 未明确说明样本数量 |
12199 | 2025-04-01 |
A novel deep learning radiopathomics model for predicting carcinogenesis promotor cyclooxygenase-2 expression in common bile duct in children with pancreaticobiliary maljunction: a multicenter study
2025-Mar-27, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-01951-5
PMID:40146354
|
研究论文 | 开发并验证了一种整合放射学和病理学影像数据的深度学习放射病理学模型(DLRPM),用于预测儿童胰胆管合流异常(PBM)患者胆道环氧合酶-2(COX-2)的表达 | 首次提出了一种整合CT和组织病理学图像的深度学习放射病理学模型(DLRPM),用于预测PBM患者胆道COX-2表达 | 需要前瞻性多中心研究进一步验证其泛化性 | 预测儿童胰胆管合流异常患者胆道COX-2的表达 | 219例PBM患者 | 数字病理 | 胰胆管合流异常 | 免疫组织化学、深度学习 | DLRPM | CT图像、H&E染色组织病理学切片 | 219例(训练集104例,内部测试集71例,外部测试集44例) |
12200 | 2025-04-01 |
Physics-informed neural networks with hybrid Kolmogorov-Arnold network and augmented Lagrangian function for solving partial differential equations
2025-Mar-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-92900-1
PMID:40148388
|
研究论文 | 本文提出了一种结合Kolmogorov-Arnold网络和增强拉格朗日函数的物理信息神经网络(AL-PKAN),用于解决偏微分方程 | 引入了混合编码器-解码器模型AL-PKAN,利用GRU模块和KAN模块解决传统多层感知器在PINNs中的解释性和谱偏差问题,并通过增强拉格朗日函数动态调节约束平衡 | 未提及具体的数据集或实际应用场景的验证 | 解决偏微分方程(PDEs)的数值计算问题 | 偏微分方程的数值解 | 机器学习 | NA | 物理信息神经网络(PINNs),Kolmogorov-Arnold网络(KAN),增强拉格朗日函数 | AL-PKAN(混合GRU和KAN模块的编码器-解码器模型) | 数值数据 | NA |