本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12321 | 2025-03-23 |
AI-driven biomarker discovery: enhancing precision in cancer diagnosis and prognosis
2025-Mar-13, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02064-7
PMID:40082367
|
评论 | 本文探讨了人工智能在癌症诊断和预后中生物标志物发现的应用,旨在提高精准医学的效果 | 利用深度学习和机器学习技术从大规模数据集中发现生物标志物,推动早期诊断和精准治疗 | 数据质量、算法透明度以及隐私相关的伦理问题 | 通过人工智能技术改进癌症早期诊断和精准治疗,提高患者生存率 | 癌症患者 | 机器学习 | 癌症 | 深度学习、机器学习 | NA | 大规模数据集 | NA |
12322 | 2025-03-23 |
Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach
2025-Mar, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202409130
PMID:39874191
|
研究论文 | 本研究提出了一种基于网络靶标理论的新型迁移学习模型,通过整合深度学习技术和多样化的生物分子网络来预测药物-疾病相互作用 | 该模型利用网络技术整合现有知识,提取更精确的药物特征,解决了大规模正负样本平衡的挑战,并在多种评估指标上表现出色 | NA | 加速药物发现和开发创新疗法 | 药物-疾病相互作用 | 机器学习 | 癌症 | 深度学习 | 迁移学习模型 | 生物分子网络数据 | 7,940种药物和2,986种疾病,共88,161种药物-疾病相互作用 |
12323 | 2025-03-23 |
Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution
2025-Mar, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202413571
PMID:39888214
|
研究论文 | 本文介绍了一种名为Methven的深度学习框架,用于在单细胞分辨率下预测非编码突变对DNA甲基化的影响 | Methven框架结合DNA序列和单细胞ATAC-seq数据,利用预训练的DNA语言模型,能够准确预测短程和长程调控相互作用,并在分类和回归任务中表现出色 | 现有工具在预测能力和捕捉动态、细胞类型特异性调控变化方面存在局限 | 研究非编码突变对DNA甲基化的影响,以理解疾病机制 | 非编码突变及其对DNA甲基化的影响 | 机器学习 | 类风湿性关节炎 | 单细胞ATAC-seq | 深度学习框架 | DNA序列数据 | NA |
12324 | 2025-03-23 |
Spectral dual-layer detector CT-based radiomics-deep learning for predicting pathological aggressiveness of stage I lung adenocarcinoma: discrimination of precursor glandular lesions and invasive adenocarcinomas
2025-Feb-28, Translational lung cancer research
IF:4.0Q1
DOI:10.21037/tlcr-24-726
PMID:40114963
|
研究论文 | 本研究评估了基于光谱双层探测器CT(SDCT)的有效原子数(Zeff)的放射组学、深度学习和临床特征在区分磨玻璃结节(GGN)特征的腺前体病变(PGLs)和腺癌中的效用 | 结合SDCT-Zeff放射组学、深度学习和临床特征,构建了临床基于深度学习的放射组学(DLR)签名诺模图,提高了预测性能 | 研究仅在中国两个医疗中心进行,样本量和地理多样性可能有限 | 区分I期肺腺癌的病理侵袭性,特别是腺前体病变和侵袭性腺癌 | 磨玻璃结节(GGN)患者 | 数字病理 | 肺癌 | 光谱双层探测器CT(SDCT) | ResNet50, LightGBM | 医学影像 | 792个GGN(训练队列582个,外部验证队列210个) |
12325 | 2025-03-23 |
The role of artificial intelligence in sepsis in the Emergency Department: a narrative review
2025-Feb-28, Annals of translational medicine
DOI:10.21037/atm-24-150
PMID:40115064
|
综述 | 本文综述了人工智能在急诊科脓毒症诊断、管理和预后中的应用 | 与传统预测分析相比,AI能够整合多种变量,提高诊断性能,并在脓毒症的诊断和预后中优于传统评分工具 | 现有的AI工具缺乏普适性和用户接受度,存在自动化偏差的风险,可能导致临床医生技能退化 | 探讨人工智能在急诊科脓毒症管理中的应用潜力 | 急诊科成年脓毒症患者 | 医疗人工智能 | 脓毒症 | 机器学习 | 机器学习模型 | 生命体征、自由文本输入、实验室测试和心电图 | NA |
12326 | 2025-03-23 |
Artificial intelligence algorithm was used to establish and verify the prediction model of portal hypertension in hepatocellular carcinoma based on clinical parameters and imaging features
2025-Feb-28, Journal of gastrointestinal oncology
IF:2.0Q3
DOI:10.21037/jgo-2024-931
PMID:40115915
|
研究论文 | 本研究旨在基于临床参数和影像特征,利用人工智能算法建立并验证肝细胞癌患者门静脉高压的预测模型 | 结合临床特征、放射组学特征和深度学习特征,构建了一个综合预测模型,以更全面地捕捉与门静脉高压相关的复杂信息,从而实现高预测准确性和实用性 | 验证集的AUC和敏感性较低,表明模型在外部验证中的表现有待提高 | 建立并验证肝细胞癌患者门静脉高压的预测模型,以支持早期干预和个性化治疗 | 肝细胞癌患者 | 数字病理 | 肝细胞癌 | 放射组学和深度学习特征提取 | 逻辑回归模型 | 临床参数和CT影像 | 884名患者(707名训练集,177名验证集) |
12327 | 2025-03-23 |
A study on hybrid-architecture deep learning model for predicting pressure distribution in 2D airfoils
2025-Jan-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84940-w
PMID:39820053
|
研究论文 | 本研究介绍了一种基于深度学习的创新技术,用于预测2D翼型的压力分布图像,旨在应用于基于图像的近似优化设计 | 提出了一种结合无监督和监督学习的混合架构深度学习模型,使用自编码器(AE)进行无监督学习,全连接神经网络(FNN)进行监督学习,并开发了基于2D图像数据的代理模型 | NA | 开发一种简化且加速图像预测的方法,用于2D翼型的压力分布预测 | 2D翼型的压力分布图像 | 计算机视觉 | NA | 深度学习 | 自编码器(AE)、卷积自编码器(CAE)、全连接神经网络(FNN) | 图像 | NA |
12328 | 2025-03-23 |
Improvement of BCI performance with bimodal SSMVEPs: enhancing response intensity and reducing fatigue
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1506104
PMID:40115888
|
研究论文 | 本文提出了一种创新的稳态运动视觉诱发电位(SSMVEP)范式,结合运动和颜色刺激,旨在增强脑机接口(BCI)性能并减少视觉疲劳 | 开发了一种结合运动和颜色刺激的SSMVEP范式,显著提高了分类准确率和信号噪声比,同时减少了视觉疲劳 | 实验在受控的实验室条件下进行,未在真实环境中验证 | 增强SSMVEP响应强度并减少视觉疲劳 | 稳态运动视觉诱发电位(SSMVEP)和稳态视觉诱发电位(SSVEP) | 脑机接口 | NA | EEGNet深度学习算法和快速傅里叶变换(FFT) | EEGNet | 脑电图(EEG)数据 | NA |
12329 | 2025-03-23 |
AM-MTEEG: multi-task EEG classification based on impulsive associative memory
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1557287
PMID:40115889
|
研究论文 | 本文提出了一种基于冲动联想记忆的多任务EEG分类模型AM-MTEEG,用于跨受试者的EEG分类 | AM-MTEEG模型结合了深度学习的卷积网络和冲动网络,利用双向联想记忆进行跨受试者的EEG分类,提高了分类精度并减少了性能差异 | NA | 提高跨受试者EEG分类的准确性和一致性 | 脑电图(EEG)数据 | 脑机接口 | NA | 深度学习 | 卷积编码器-解码器、冲动神经元、双向联想记忆 | EEG数据 | 两个BCI竞赛数据集 |
12330 | 2025-03-22 |
Low-speed impact localization of wind turbine blades with a single sensor utilizing multiscale feature fusion convolutional neural networks
2025-Jun, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107598
PMID:39955861
|
研究论文 | 本文提出了一种基于深度学习的单传感器冲击定位方法,用于风力涡轮机叶片的低速冲击定位 | 设计了一种多尺度特征融合卷积神经网络,并结合卷积块注意力模块,从单传感器信号中自适应提取特征,实现精确的区域级源定位 | NA | 开发一种用于评估和定位复合材料结构(如风力涡轮机叶片)冲击的方法 | 风力涡轮机叶片的低速冲击响应 | 机器学习 | NA | 完全集成经验模态分解与自适应噪声 | 多尺度特征融合卷积神经网络 | 声发射信号 | 钢球跌落实验模拟的风力涡轮机叶片翼梁低速冲击响应 |
12331 | 2025-03-22 |
Automated Bone Cancer Detection Using Deep Learning on X-Ray Images
2025-Apr, Surgical innovation
IF:1.2Q3
DOI:10.1177/15533506241299886
PMID:39679470
|
研究论文 | 本文提出了一种基于深度学习的自动化骨癌检测方法,使用X射线图像进行骨癌分类 | 提出了一种结合Golden Search优化算法和深度学习的计算机辅助诊断方法(GSODL-CADBCC),用于骨癌分类 | 未提及具体的数据集规模或多样性限制,也未讨论模型在其他类型医学图像上的泛化能力 | 开发一种自动化系统,用于从X射线图像中准确区分健康骨骼和癌变骨骼 | X射线图像中的骨骼 | 计算机视觉 | 骨癌 | 深度学习,Golden Search优化算法,双边滤波 | SqueezeNet,LSTM | X射线图像 | 未明确提及具体样本数量 |
12332 | 2025-03-22 |
A Systematic Review of Advances in AI-Assisted Analysis of Fundus Fluorescein Angiography (FFA) Images: From Detection to Report Generation
2025-Apr, Ophthalmology and therapy
IF:2.6Q2
DOI:10.1007/s40123-025-01109-y
PMID:39982648
|
综述 | 本文系统回顾了人工智能在眼底荧光血管造影(FFA)图像分析中的应用进展,从病变检测到报告生成 | 总结了AI在FFA图像分析中的关键突破,并探讨了其对眼科临床实践的潜在影响 | 需要进一步研究以提高模型透明度,并确保在不同人群中的稳健性能,数据隐私和技术基础设施仍是广泛临床应用的挑战 | 探讨人工智能在FFA图像分析中的应用及其对眼科临床实践的影响 | 眼底荧光血管造影(FFA)图像 | 计算机视觉 | 眼底疾病 | 深度学习,机器学习 | NA | 图像 | 23篇文章 |
12333 | 2025-03-22 |
Deep Learning Neural Network Based on PSO for Leukemia Cell Disease Diagnosis from Microscope Images
2025-Mar-20, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01474-x
PMID:40113730
|
研究论文 | 本文提出了一种基于粒子群优化(PSO)的深度学习神经网络方法,用于从显微镜图像中诊断白血病细胞疾病 | 结合深度学习和PSO方法进行特征提取和优化,使用多种机器学习算法进行分析,提高了白血病细胞诊断的准确性 | 未提及样本的具体数量和多样性,可能影响模型的泛化能力 | 提高白血病细胞疾病的诊断准确性 | 显微镜图像中的白血病细胞 | 计算机视觉 | 白血病 | 深度学习,粒子群优化(PSO) | GoogLeNet, ResNet-50, 决策树(DT), 支持向量机(SVM), K近邻(K-NN) | 图像 | NA |
12334 | 2025-03-22 |
Safe-by-Design Strategies for Intranasal Drug Delivery Systems: Machine and Deep Learning Solutions to Differentiate Epithelial Tissues via Attenuated Total Reflection Fourier Transform Infrared Spectroscopy
2025-Mar-14, ACS pharmacology & translational science
IF:4.9Q1
DOI:10.1021/acsptsci.4c00643
PMID:40109738
|
研究论文 | 本研究结合衰减全反射傅里叶变换红外光谱(ATR-FTIR)与机器学习和深度学习技术,有效区分鼻至脑上皮组织,开发了鼻内药物递送系统的安全设计模型 | 首次将ATR-FTIR光谱与机器学习和深度学习技术结合,用于区分鼻至脑上皮组织,并开发了安全设计模型 | 研究基于离体猪组织实验,可能无法完全反映人体组织的复杂性 | 开发鼻内药物递送系统的安全设计模型,提高组织识别的精确性 | 嗅觉上皮(OE)、呼吸上皮(RE)和气管组织 | 机器学习 | NA | ATR-FTIR光谱 | 前馈神经网络(FNN)、支持向量机(SVM)、去噪自编码器 | 光谱数据 | 离体猪组织样本 |
12335 | 2025-03-22 |
A Hybrid Energy-Based and AI-Based Screening Approach for the Discovery of Novel Inhibitors of AXL
2025-Mar-13, ACS medicinal chemistry letters
IF:3.5Q2
DOI:10.1021/acsmedchemlett.4c00511
PMID:40110119
|
研究论文 | 本研究介绍了一种结合AI增强的图神经网络PLANET和几何深度学习算法DeepDock的高通量虚拟筛选方法,用于发现新型AXL抑制剂 | 结合AI增强的图神经网络和几何深度学习算法进行高通量虚拟筛选,发现新型AXL抑制剂 | 未提及具体局限性 | 开发新型AXL抑制剂以推进癌症治疗 | AXL受体酪氨酸激酶及其抑制剂 | 机器学习 | 癌症 | 高通量虚拟筛选(HTVS) | 图神经网络(PLANET)、几何深度学习算法(DeepDock) | 化学数据库 | 未提及具体样本数量 |
12336 | 2025-03-22 |
An improved Artificial Protozoa Optimizer for CNN architecture optimization
2025-Mar-13, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107368
PMID:40112636
|
研究论文 | 本文提出了一种名为MAPOCNN的新型神经架构搜索方法,利用改进的人工原生动物优化器(APO)来优化卷积神经网络(CNN)的架构 | 引入了改进的人工原生动物优化器(MAPO),结合原生动物的趋光行为,以缓解早熟收敛的风险,从而探索更广泛的CNN架构并找到更优的解决方案 | NA | 优化卷积神经网络(CNN)的架构 | 卷积神经网络(CNN) | 机器学习 | NA | 神经架构搜索(NAS) | CNN | 图像 | 基准数据集(包括Rectangle和Mnist-random) |
12337 | 2025-03-22 |
Multi-scale structural similarity embedding search across entire proteomes
2025-Mar-06, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.28.640875
PMID:40093062
|
研究论文 | 本文提出了一种可扩展的结构相似性搜索策略,用于处理大量实验确定的结构和通过AI/DL方法预测的计算结构模型 | 利用蛋白质语言模型和深度神经网络架构将3D结构转换为固定长度的向量,实现高效的大规模比较 | 模型虽然能够预测单域结构之间的TM分数,但在处理多域结构时可能存在局限性 | 开发一种可扩展且高效的结构相似性搜索方法,以应对3D生物分子结构信息的快速增长 | 实验确定的结构和通过AI/DL方法预测的计算结构模型 | 生物信息学 | NA | AI/DL方法 | 深度神经网络 | 3D结构数据 | NA |
12338 | 2025-03-22 |
Deep Huber quantile regression networks
2025-Mar-05, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107364
PMID:40112635
|
研究论文 | 本文介绍了深度Huber分位数回归网络(DHQRN),该网络能够预测Huber分位数,并作为分位数回归神经网络(QRNN)和期望分位数回归神经网络(ERNN)的扩展 | 提出了深度Huber分位数回归网络(DHQRN),能够预测更一般的Huber分位数,并嵌套了QRNN和ERNN作为极限情况 | 未明确提及具体局限性 | 研究目的是通过深度学习算法预测概率分布的更多功能(如分位数和期望分位数),以量化预测的不确定性 | 房屋价格预测,具体案例为澳大利亚墨尔本和美国波士顿的房价 | 机器学习 | NA | 深度学习 | 深度Huber分位数回归网络(DHQRN) | 房价数据 | 未明确提及具体样本数量 |
12339 | 2025-03-22 |
Detection of Quality Deterioration of Packaged Raw Beef Based on Hyperspectral Technology
2025-Mar, Food science & nutrition
IF:3.5Q2
DOI:10.1002/fsn3.70022
PMID:40109275
|
研究论文 | 本研究探讨了结合高光谱成像技术、化学计量学和深度学习来检测聚乙烯包装生牛肉质量恶化的可行性,特别是针对关键脂质氧化指标丙二醛(MDA)含量的检测 | 结合高光谱成像技术、化学计量学和深度学习,探索了在包装膜干扰下检测牛肉质量恶化的新方法,并应用高斯滤波减少包装膜对光谱数据的干扰 | 模型在包装牛肉样本上的性能通常不如未包装牛肉样本 | 确保食品质量和安全,实时监测包装生牛肉在储存和运输过程中的关键质量指标 | 聚乙烯包装的生牛肉 | 计算机视觉 | NA | 高光谱成像技术(HSI) | 最小二乘回归(PLSR)和秃鹫优化算法优化的回声神经网络(BES-ESN) | 光谱和空间数据 | 短期储存的牛肉样本 |
12340 | 2025-03-21 |
Semi-supervised assisted multi-task learning for oral optical coherence tomography image segmentation and denoising
2025-Mar-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.545377
PMID:40109516
|
研究论文 | 本文介绍了一种名为高效分割去噪模型(ESDM)的多任务深度学习框架,旨在通过减少扫描时间和提高口腔上皮层分割质量来增强光学相干断层扫描(OCT)成像 | ESDM结合了卷积层的局部特征提取能力和Transformer的长期信息处理优势,实现了比现有模型更好的去噪和分割性能 | NA | 提高OCT成像质量,减少扫描时间,并改善口腔上皮层的分割精度 | 口腔黏膜组织的OCT图像 | 计算机视觉 | NA | 光学相干断层扫描(OCT) | 多任务深度学习框架(ESDM) | 图像 | NA |