深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 16751 篇文献,本页显示第 14361 - 14380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
14361 2025-03-26
Investigation of a deep learning-based reconstruction approach utilizing dual-view projection for myocardial perfusion SPECT imaging
2025, American journal of nuclear medicine and molecular imaging IF:2.0Q3
研究论文 提出一种基于深度学习的双视角投影重建方法,用于心肌灌注SPECT成像,以减少采集时间并实现非旋转成像 利用深度学习技术(U-Net)重建双视角投影,减少传统双头SPECT扫描仪的扫描时间和机架旋转需求 2D U-Net在轴向连续性上表现略逊于参考图像,3D U-Net虽有所改进但仍存在局部绝对百分比误差 优化心肌灌注SPECT成像的采集时间和成像质量 心肌灌注SPECT成像 数字病理 心血管疾病 SPECT/CT扫描 U-Net(2D和3D) 图像 116例SPECT/CT扫描(使用Tc-tetrofosmin示踪剂,GE NM/CT 640扫描仪采集) NA NA NA NA
14362 2025-03-26
Multimodal deep learning with MUF-net for noninvasive WHO/ISUP grading of renal cell carcinoma using CEUS and B-mode ultrasound
2025, Frontiers in physiology IF:3.2Q2
研究论文 本研究开发并验证了一种多模态深度学习模型MUF-Net,用于利用术前灰度超声和对比增强超声(CEUS)视频数据对肾细胞癌(RCC)进行无创WHO/ISUP核分级 提出了一种新型多模态超声融合网络(MUF-Net),整合B型和CEUS模态,通过预测权重的加权和来提取和融合图像特征 研究为双中心回顾性研究,样本量相对有限(100例患者) 开发非侵入性肾细胞癌WHO/ISUP核分级方法 肾细胞癌患者 数字病理 肾细胞癌 CEUS和B型超声 MUF-Net(多模态深度学习模型) 超声视频和图像 100例患者的6293张超声图像 NA NA NA NA
14363 2025-03-26
Development and Evaluation of a Deep Learning Algorithm to Differentiate Between Membranes Attached to the Optic Disc on Ultrasonography
2025, Clinical ophthalmology (Auckland, N.Z.)
研究论文 开发并评估了一种基于深度学习的算法,用于在超声检查中区分附着于视盘的膜 首次使用基于Transformer的Vision Transformer (ViT)模型对眼部超声B扫描图像进行分类,以区分健康、视网膜脱离(RD)和玻璃体后脱离(PVD) 存在少量误分类情况,有7例RD被错误标记为PVD 提高在超声检查中识别和区分附着于视盘的膜的准确性 眼部超声B扫描图像 计算机视觉 眼科疾病 超声检查(USG) Vision Transformer (ViT) 图像 训练和验证集505个样本,测试集212个样本 NA NA NA NA
14364 2025-03-26
[Paper Review: Deep Learning-based PET Image Denoising and Reconstruction: A Review]
2025, Nihon Hoshasen Gijutsu Gakkai zasshi
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
14365 2025-03-25
Ink classification in historical documents using hyperspectral imaging and machine learning methods
2025-Jul-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究探索了使用高光谱成像和机器学习技术对历史文献中的墨水进行分类 结合高光谱成像和多种机器学习方法(包括传统算法和深度学习模型)进行墨水分类,并在具有挑战性的条件下实现高准确率 仅针对三种特定类型的墨水进行分类,可能不适用于其他类型的墨水 开发非侵入性的墨水识别和映射方法,以促进历史文献的保护和分析 历史文献中的墨水(纯金属没食子酸墨水、含碳墨水和非含碳墨水) 计算机视觉 NA 高光谱成像 SVM, KNN, LDA, Random Forest, PLS-DA, DL-based model 图像 模拟样本和历史文献样本 NA NA NA NA
14366 2025-03-25
Evaluation of a novel ensemble model for preoperative ovarian cancer diagnosis: Clinical factors, O-RADS, and deep learning radiomics
2025-Apr, Translational oncology IF:4.5Q1
research paper 本研究开发了一种结合临床变量、O-RADS和深度学习放射组学的集成模型,用于术前卵巢癌诊断,并评估其对超声医师诊断能力的提升效果 首次将临床变量、O-RADS评分和深度学习放射组学特征相结合,构建集成模型,显著提高了卵巢癌的诊断准确性和超声医师的诊断能力 研究仅基于两个中心的数据,可能需要更多外部验证以确认模型的泛化能力 提高术前卵巢癌诊断的准确性并评估模型对超声医师诊断能力的提升效果 卵巢癌患者 digital pathology ovarian cancer deep learning radiomics, LASSO method ensemble model transvaginal ultrasound images 来自两个中心的数据(具体样本量未明确说明) NA NA NA NA
14367 2025-03-25
Gran canaria vegetation segmentation dataset from multi-year aerial imagery for environmental monitoring and conservation
2025-Apr, Data in brief IF:1.0Q3
research paper 介绍了一个针对Gran Canaria(加那利群岛,西班牙)的新数据集,旨在通过计算机视觉技术自动生成植被地图 该数据集在基于航拍图像的语义分割领域中独特,提供了20个明确定义的植被群落的详细注释,超越了现有数据集的广泛分类 NA 开发并测试能够自动生成植被地图的深度学习模型,以支持环境监测和保护 Gran Canaria的植被群落 computer vision NA deep learning, computer vision NA aerial imagery 20个明确定义的植被群落,以及五个非植被类别(如水体、道路或建筑物) NA NA NA NA
14368 2025-03-25
Thermal conductivity of the layered titanate K0.8Li0.27Ti1.73O4 explored by a deep learning interatomic potential
2025-Mar-28, The Journal of chemical physics IF:3.1Q1
研究论文 本研究通过深度学习原子间势能预测层状钛酸盐K0.8Li0.27Ti1.73O4的热导率 采用深度神经网络模型构建原子间势能,克服了传统方法的局限性,为层状材料的热导率研究提供了新方法 研究仅针对K0.8Li0.27Ti1.73O4一种材料,未验证其他层状材料的适用性 预测层状氧化物材料的热导率 层状钛酸盐K0.8Li0.27Ti1.73O4 (KLTO) 材料科学 NA 深度学习 深度神经网络 原子力、能量和弹性性质数据 NA NA NA NA NA
14369 2025-03-25
Deep learning for cardiac abnormalities in chest X-rays: performance metrics with imbalanced data and extracardiac objects
2025-Mar-24, European heart journal IF:37.6Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
14370 2025-03-25
Transforming wearable sensor data for robust feature selection in human activity recognition using reinforcement learning approach
2025-Mar-24, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 本文提出了一种利用深度强化学习方法处理可穿戴传感器数据,以提高人体活动识别的准确性和鲁棒性 结合生成式演员-评论家(GAC)方法和循环生成对抗网络,增强了类间差异并减少了类内变化,提高了噪声环境下的识别准确率 未提及该方法在实时处理或计算资源消耗方面的表现 提高可穿戴传感器数据在人体活动识别中的准确性和鲁棒性 可穿戴传感器收集的人体活动数据 机器学习 NA 深度强化学习(GAC)、循环生成对抗网络 GAC、GAN 时间序列传感器数据 UCI-HAR和Motion Sense数据集(具体样本量未提及) NA NA NA NA
14371 2025-03-25
Parallel convolutional SpinalNet: A hybrid deep learning approach for breast cancer detection using mammogram images
2025-Mar-24, Network (Bristol, England)
研究论文 提出了一种并行卷积SpinalNet混合深度学习模型,用于通过乳腺X光图像高效检测乳腺癌 结合并行卷积神经网络(PCNN)和SpinalNet开发了PConv-SpinalNet模型,在乳腺癌检测中表现出色 NA 通过深度学习技术提高乳腺癌检测的准确率 乳腺X光图像中的肿瘤检测 计算机视觉 乳腺癌 Gabor滤波器、LadderNet、图像增强技术(图像操作、图像擦除、图像混合)、多种特征提取方法(CNN特征、Texton、LGBP、SIFT、LMP与DCT) PConv-SpinalNet (PCNN与SpinalNet的集成) 图像 NA NA NA NA NA
14372 2025-03-25
HUNHODRL: Energy efficient resource distribution in a cloud environment using hybrid optimized deep reinforcement model with HunterPlus scheduler
2025-Mar-24, Network (Bristol, England)
研究论文 提出一种基于深度学习的签名验证方法,用于增强教育安全和合法性 采用VGG19架构处理学生签名的独特特征,提供灵活性和可扩展性 未提及对不同签名风格和文化差异的适应性 解决学生签名验证问题,提升学术机构的安全性和合法性 学生签名 机器学习 NA 深度学习 CNN (VGG19) 图像 未明确提及 NA NA NA NA
14373 2025-03-25
Leveraging the internet of things and optimized deep residual networks for improved foliar disease detection in apple orchards
2025-Mar-24, Network (Bristol, England)
研究论文 本文提出了一种基于深度学习的苹果叶部病害分类方法,结合了Tunicate Swarm Sine Cosine算法优化的深度残差网络(TSSCA-based DRN) 提出了TSSCA-based DRN模型,结合了Tunicate Swarm算法和Sine Cosine算法,显著提高了分类器的性能 NA 提高苹果叶部病害的检测准确率 苹果树的叶部病害 计算机视觉 植物病害 深度残差网络(DRN)、Tunicate Swarm算法(TSA)、Sine Cosine算法(SCA) TSSCA-based DRN 图像 Plant Pathology 2020 - FGVC7数据集 NA NA NA NA
14374 2025-03-25
Correlation of point-wise retinal sensitivity with localized features of diabetic macular edema using deep learning
2025-Mar-23, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie
research paper 本研究使用深度学习技术评估糖尿病黄斑水肿(DME)局部特征与点状视网膜敏感度(RS)之间的关联 首次使用深度学习算法自动量化OCT扫描中的视网膜内液(IRF)和椭圆体区(EZ)厚度,并分析其与点状视网膜敏感度的关联 样本量较小(20名患者的20只眼),且EZ厚度在硬性渗出物(HEs)下方的值被排除 评估糖尿病黄斑水肿(DME)的局部特征与点状视网膜敏感度(RS)之间的关联 20名临床显著DME患者的20只眼 digital pathology diabetic macular edema OCT, microperimetry (MP), deep learning (DL) DL-based algorithms OCT scans, microperimetry data 20 eyes of 20 patients with clinically significant DME NA NA NA NA
14375 2025-03-25
Enhancing Schizophrenia Diagnosis Through Multi-View EEG Analysis: Integrating Raw Signals and Spectrograms in a Deep Learning Framework
2025-Mar-23, Clinical EEG and neuroscience IF:1.6Q3
research paper 该研究提出了一种深度学习框架,通过整合原始多通道EEG信号及其频谱图来增强精神分裂症的诊断 创新点在于采用双分支模型处理互补数据视图,结合深度卷积有效整合EEG通道间的空间依赖性,同时捕捉时间动态和频率特定特征 研究样本量较小(分别为84和28名受试者),可能影响模型的泛化能力 开发精确且自动化的精神分裂症检测工具,改善临床诊断效果 精神分裂症患者的多通道EEG信号及其频谱图 digital pathology 精神分裂症 EEG信号分析 深度学习框架(双分支模型) EEG信号(原始信号和频谱图) 两个数据集(84名和28名受试者) NA NA NA NA
14376 2025-03-25
Synthetic bone marrow images augment real samples in developing acute myeloid leukemia microscopy classification models
2025-Mar-22, NPJ digital medicine IF:12.4Q1
research paper 该研究探讨了使用生成对抗网络(GANs)合成骨髓涂片(BMS)图像以增强急性髓系白血病(AML)显微镜分类模型的训练效果 利用StyleGAN2-Ada生成高质量的合成骨髓涂片图像,并通过视觉图灵测试验证其质量,同时展示了合成数据在罕见疾病分类中的性能提升 研究仅针对AML和APL两种疾病,未涵盖其他类型的白血病或骨髓疾病 开发高准确度的显微镜图像分类模型,解决数据共享的隐私问题 骨髓涂片图像,包括AML、APL患者及干细胞供者的样本 digital pathology acute myeloid leukemia GANs, StyleGAN2-Ada GAN, DL classifiers image 1251名AML患者、51名APL患者和236名干细胞供者的骨髓涂片图像 NA NA NA NA
14377 2025-03-25
RNALoc-LM: RNA subcellular localization prediction using pre-trained RNA language model
2025-Mar-22, Bioinformatics (Oxford, England)
research paper 本研究提出了一种名为RNALoc-LM的可解释深度学习框架,利用预训练的RNA语言模型预测RNA亚细胞定位 首次将预训练的RNA语言模型应用于RNA亚细胞定位预测,结合TextCNN、BiLSTM和多头注意力机制提升预测性能 未明确提及具体局限性 开发能够同时预测多种RNA亚细胞定位的精确计算方法 lncRNAs、miRNAs和circRNAs等RNA分子 生物信息学 NA 预训练RNA语言模型、TextCNN、BiLSTM、多头注意力机制 深度学习框架(结合语言模型、CNN、LSTM) RNA序列数据 未明确提及具体样本量 NA NA NA NA
14378 2025-03-25
A few-shot network intrusion detection method based on mutual centralized learning
2025-Mar-21, Scientific reports IF:3.8Q1
研究论文 提出一种基于互为中心学习的少样本网络入侵检测方法(FS-MCL),以解决少样本网络流量检测性能低的问题 利用编码器提取的密集特征与离散空间中的粒子关联,通过马尔可夫过程测量密集特征的预期访问次数,确定查询特征属于支持类的概率 依赖公开数据集构建少样本检测数据集,可能在实际应用中存在泛化性问题 提高少样本网络入侵检测的性能 网络流量数据 机器学习 NA 互为中心学习 FS-MCL 网络流量数据(转换为类图像数据) 三个公开数据集中的流量数据 NA NA NA NA
14379 2025-03-25
Scalable intermediate-term earthquake forecasting with multimodal fusion neural networks
2025-Mar-21, Scientific reports IF:3.8Q1
研究论文 提出了一种名为SafeNet的可扩展深度学习框架,用于通过多模态融合神经网络整合地震观测数据 SafeNet通过专门的融合模块和自适应注意力机制,实现了跨区域的动态时空信息交换,并在中国和美国的地震数据上展示了优越的预测性能 未提及具体的计算资源需求或模型在不同地理区域的泛化能力限制 开发一个可扩展的深度学习框架,以整合异构地震观测数据并提高地震预测的准确性 地震观测数据和地质信息 机器学习 NA 多模态融合神经网络 SafeNet 地震目录数据和地质地图 50年中国地震目录数据,并在美国连续和西部地区进行了模型迁移验证 NA NA NA NA
14380 2025-03-25
A practical generalization metric for deep networks benchmarking
2025-Mar-21, Scientific reports IF:3.8Q1
research paper 本文提出了一种实用的泛化度量标准,用于评估不同深度网络的泛化能力,并提出了一个新颖的测试平台来验证理论估计 引入了一种新的实用泛化度量标准,能够量化深度学习模型的准确性和数据多样性,并提出了一个测试平台来验证理论估计 研究发现大多数现有的泛化理论估计与实用测量结果不相关,暴露了理论估计的不足 评估深度网络的泛化能力并验证理论估计 深度网络 machine learning NA NA deep networks NA NA NA NA NA NA
回到顶部