本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 14421 | 2025-10-07 |
AI-driven biomarker discovery: enhancing precision in cancer diagnosis and prognosis
2025-Mar-13, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02064-7
PMID:40082367
|
评论 | 探讨人工智能在癌症生物标志物发现中的应用,以提升精准诊断和预后效果 | 系统阐述AI技术通过挖掘大规模多样化数据集中的模式,革新生物标志物发现方法,推动精准医疗发展 | 存在数据质量、算法透明度不足以及隐私等伦理问题 | 阐明AI如何优化新型生物标志物识别,改善早期诊断和靶向治疗 | 癌症生物标志物发现过程及相关临床数据 | 机器学习 | 癌症 | 深度学习、机器学习诊断技术 | NA | 科学数据库数据(PubMed、Scopus、ScienceDirect) | NA | NA | NA | NA | NA |
| 14422 | 2025-10-07 |
Exploring Psychological Trends in Populations With Chronic Obstructive Pulmonary Disease During COVID-19 and Beyond: Large-Scale Longitudinal Twitter Mining Study
2025-Mar-05, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/54543
PMID:40053739
|
研究论文 | 通过大规模Twitter数据挖掘分析慢性阻塞性肺疾病人群在COVID-19期间及之后的长期心理趋势 | 首次采用两阶段深度学习框架对COPD人群进行长期纵向心理分析,结合多种深度学习和统计方法揭示人口特征对心理影响的差异 | 研究基于社交媒体数据,可能存在样本选择偏差,且无法确定用户自我报告的COPD诊断准确性 | 揭示COVID-19大流行期间及之后COPD人群的长期心理趋势和模式 | 慢性阻塞性肺疾病患者及非COPD Twitter用户 | 自然语言处理 | 慢性阻塞性肺疾病 | Twitter数据挖掘,深度学习 | 深度学习算法 | 文本数据(推文) | 15,347名COPD用户,超过25亿条推文(2020年1月至2023年6月) | NA | NA | 比值比,差异中的差异,情绪模式分析 | NA |
| 14423 | 2025-10-07 |
Leveraging Network Target Theory for Efficient Prediction of Drug-Disease Interactions: A Transfer Learning Approach
2025-Mar, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202409130
PMID:39874191
|
研究论文 | 提出基于网络靶标理论的迁移学习模型,通过整合深度学习与生物分子网络预测药物-疾病相互作用 | 首次将网络靶标理论与迁移学习结合,利用大规模生物分子网络提取更精确的药物特征,解决正负样本不平衡问题 | 未明确说明模型在特定疾病类型外的泛化能力 | 开发高效的虚拟筛选方法加速药物发现 | 药物-疾病相互作用关系 | 机器学习 | 癌症 | 网络靶标理论,深度学习 | 迁移学习模型 | 生物分子网络数据 | 88,161个药物-疾病相互作用,涉及7,940种药物和2,986种疾病 | NA | NA | AUC, F1-score | NA |
| 14424 | 2025-10-07 |
Epigenetic Impacts of Non-Coding Mutations Deciphered Through Pre-Trained DNA Language Model at Single-Cell Resolution
2025-Mar, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202413571
PMID:39888214
|
研究论文 | 提出了一种名为Methven的深度学习框架,用于在单细胞分辨率下预测非编码突变对DNA甲基化的表观遗传影响 | 结合DNA序列与单细胞ATAC-seq数据,采用分治法预测短程和长程调控相互作用,并利用预训练DNA语言模型提高分类和回归任务的精度 | NA | 预测非编码突变在单细胞分辨率下对DNA甲基化的表观遗传影响 | DNA序列、单细胞ATAC-seq数据、SNP-CpG相互作用 | 机器学习 | 类风湿关节炎 | 单细胞ATAC-seq, DNA测序 | 深度学习 | 基因组序列, 表观遗传数据 | NA | NA | 预训练DNA语言模型 | 分类精度, 回归精度 | NA |
| 14425 | 2025-10-07 |
Deep Learning-Based Electrocardiogram Model (EIANet) to Predict Emergency Department Cardiac Arrest: Development and External Validation Study
2025-Feb-28, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/67576
PMID:40053733
|
研究论文 | 开发并验证基于深度学习的心电图图像模型EIANet,用于预测急诊科心脏骤停 | 提出首个使用12导联心电图图像的深度学习模型,结合空间注意力机制和自定义二元召回损失函数,可直接利用常规分诊心电图图像进行预测 | 数据集来自两家医院,需要更多外部验证;样本量相对有限 | 开发早期预测急诊科心脏骤停的深度学习模型 | 急诊科成年患者的心电图图像数据 | 医疗影像分析 | 心血管疾病 | 心电图图像分析 | CNN | 图像 | NTUH数据集:571例病例ECG和826例对照ECG;FEMH数据集:378例病例ECG和713例对照ECG | PyTorch | ResNet50 | F1-score, AUROC, AUPRC | NA |
| 14426 | 2025-03-23 |
Spectral dual-layer detector CT-based radiomics-deep learning for predicting pathological aggressiveness of stage I lung adenocarcinoma: discrimination of precursor glandular lesions and invasive adenocarcinomas
2025-Feb-28, Translational lung cancer research
IF:4.0Q1
DOI:10.21037/tlcr-24-726
PMID:40114963
|
研究论文 | 本研究评估了基于光谱双层探测器CT(SDCT)的有效原子数(Zeff)的放射组学、深度学习和临床特征在区分磨玻璃结节(GGN)特征的腺前体病变(PGLs)和腺癌中的效用 | 结合SDCT-Zeff放射组学、深度学习和临床特征,构建了临床基于深度学习的放射组学(DLR)签名诺模图,提高了预测性能 | 研究仅在中国两个医疗中心进行,样本量和地理多样性可能有限 | 区分I期肺腺癌的病理侵袭性,特别是腺前体病变和侵袭性腺癌 | 磨玻璃结节(GGN)患者 | 数字病理 | 肺癌 | 光谱双层探测器CT(SDCT) | ResNet50, LightGBM | 医学影像 | 792个GGN(训练队列582个,外部验证队列210个) | NA | NA | NA | NA |
| 14427 | 2025-03-23 |
The role of artificial intelligence in sepsis in the Emergency Department: a narrative review
2025-Feb-28, Annals of translational medicine
DOI:10.21037/atm-24-150
PMID:40115064
|
综述 | 本文综述了人工智能在急诊科脓毒症诊断、管理和预后中的应用 | 与传统预测分析相比,AI能够整合多种变量,提高诊断性能,并在脓毒症的诊断和预后中优于传统评分工具 | 现有的AI工具缺乏普适性和用户接受度,存在自动化偏差的风险,可能导致临床医生技能退化 | 探讨人工智能在急诊科脓毒症管理中的应用潜力 | 急诊科成年脓毒症患者 | 医疗人工智能 | 脓毒症 | 机器学习 | 机器学习模型 | 生命体征、自由文本输入、实验室测试和心电图 | NA | NA | NA | NA | NA |
| 14428 | 2025-03-23 |
Artificial intelligence algorithm was used to establish and verify the prediction model of portal hypertension in hepatocellular carcinoma based on clinical parameters and imaging features
2025-Feb-28, Journal of gastrointestinal oncology
IF:2.0Q3
DOI:10.21037/jgo-2024-931
PMID:40115915
|
研究论文 | 本研究旨在基于临床参数和影像特征,利用人工智能算法建立并验证肝细胞癌患者门静脉高压的预测模型 | 结合临床特征、放射组学特征和深度学习特征,构建了一个综合预测模型,以更全面地捕捉与门静脉高压相关的复杂信息,从而实现高预测准确性和实用性 | 验证集的AUC和敏感性较低,表明模型在外部验证中的表现有待提高 | 建立并验证肝细胞癌患者门静脉高压的预测模型,以支持早期干预和个性化治疗 | 肝细胞癌患者 | 数字病理 | 肝细胞癌 | 放射组学和深度学习特征提取 | 逻辑回归模型 | 临床参数和CT影像 | 884名患者(707名训练集,177名验证集) | NA | NA | NA | NA |
| 14429 | 2025-10-07 |
Inherently imperfect, inherently evolving - The pursuit of precision through biomarkers
2025-Feb, Biomedical journal
IF:4.1Q2
DOI:10.1016/j.bj.2025.100839
PMID:40015558
|
特刊 | 本期生物医学期刊聚焦癌症生物标志物研究,涵盖多种检测技术及疾病应用,同时探讨传染病研究、深度学习在医学影像中的应用等前沿话题 | 整合多种新兴生物标志物(cfDNA、粪便miRNA、EB病毒DNA等)与LC-MS技术结合的多标志物面板,并探索深度学习在创伤影像和心电图死亡率预测中的创新应用 | 研究范围广泛但深度有限,各主题间缺乏系统性关联,未提供具体实验数据和性能指标验证 | 推进精准医疗通过生物标志物开发,探索多种疾病检测和管理的新方法 | 结直肠癌、卵巢癌、鼻咽癌、肝细胞癌等癌症患者,以及圆虫感染、自身免疫性肝炎、急性肾损伤等疾病模型 | 生物医学 | 多癌种及其他疾病 | cfDNA检测、miRNA分析、LC-MS质谱、循环肿瘤细胞检测、深度学习 | 深度学习模型 | 基因组数据、医学影像、心电图信号、临床样本 | NA | NA | NA | NA | NA |
| 14430 | 2025-10-07 |
A study on hybrid-architecture deep learning model for predicting pressure distribution in 2D airfoils
2025-Jan-16, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84940-w
PMID:39820053
|
研究论文 | 提出一种基于混合架构深度学习模型预测二维翼型压力分布图像的新方法 | 结合无监督和监督学习范式,开发了融合传统自编码器、卷积自编码器和混合CAE的混合架构模型 | 仅针对二维翼型进行验证,未扩展到三维复杂几何形状 | 开发图像预测方法以支持基于图像的近似优化设计 | 二维翼型的压力分布图像 | 计算机视觉 | NA | 计算流体动力学模拟 | 自编码器, 全连接神经网络 | 图像 | NA | NA | 自编码器, 卷积自编码器, 混合CAE | 匹配率 | NA |
| 14431 | 2025-10-07 |
Evaluating and implementing machine learning models for personalised mobile health app recommendations
2025, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0319828
PMID:40106462
|
研究论文 | 本文评估并实现了用于个性化移动健康应用推荐的机器学习模型 | 引入Rating_Reviews特征捕捉评分和评论的累积影响,并采用BERT等先进模型在健康应用推荐中实现高效迁移学习 | NA | 设计一个利用应用属性为用户提供相关上下文建议的推荐系统 | 来自各健康应用平台的应用描述、评分、评论和其他相关属性 | 机器学习 | NA | 机器学习,深度学习 | Random Forest Classifier, BERT | 文本数据(应用描述、评论),结构化数据(评分、属性) | NA | NA | BERT | 准确率 | NA |
| 14432 | 2025-03-23 |
Improvement of BCI performance with bimodal SSMVEPs: enhancing response intensity and reducing fatigue
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1506104
PMID:40115888
|
研究论文 | 本文提出了一种创新的稳态运动视觉诱发电位(SSMVEP)范式,结合运动和颜色刺激,旨在增强脑机接口(BCI)性能并减少视觉疲劳 | 开发了一种结合运动和颜色刺激的SSMVEP范式,显著提高了分类准确率和信号噪声比,同时减少了视觉疲劳 | 实验在受控的实验室条件下进行,未在真实环境中验证 | 增强SSMVEP响应强度并减少视觉疲劳 | 稳态运动视觉诱发电位(SSMVEP)和稳态视觉诱发电位(SSVEP) | 脑机接口 | NA | EEGNet深度学习算法和快速傅里叶变换(FFT) | EEGNet | 脑电图(EEG)数据 | NA | NA | NA | NA | NA |
| 14433 | 2025-03-23 |
AM-MTEEG: multi-task EEG classification based on impulsive associative memory
2025, Frontiers in neuroscience
IF:3.2Q2
DOI:10.3389/fnins.2025.1557287
PMID:40115889
|
研究论文 | 本文提出了一种基于冲动联想记忆的多任务EEG分类模型AM-MTEEG,用于跨受试者的EEG分类 | AM-MTEEG模型结合了深度学习的卷积网络和冲动网络,利用双向联想记忆进行跨受试者的EEG分类,提高了分类精度并减少了性能差异 | NA | 提高跨受试者EEG分类的准确性和一致性 | 脑电图(EEG)数据 | 脑机接口 | NA | 深度学习 | 卷积编码器-解码器、冲动神经元、双向联想记忆 | EEG数据 | 两个BCI竞赛数据集 | NA | NA | NA | NA |
| 14434 | 2025-03-22 |
Low-speed impact localization of wind turbine blades with a single sensor utilizing multiscale feature fusion convolutional neural networks
2025-Jun, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107598
PMID:39955861
|
研究论文 | 本文提出了一种基于深度学习的单传感器冲击定位方法,用于风力涡轮机叶片的低速冲击定位 | 设计了一种多尺度特征融合卷积神经网络,并结合卷积块注意力模块,从单传感器信号中自适应提取特征,实现精确的区域级源定位 | NA | 开发一种用于评估和定位复合材料结构(如风力涡轮机叶片)冲击的方法 | 风力涡轮机叶片的低速冲击响应 | 机器学习 | NA | 完全集成经验模态分解与自适应噪声 | 多尺度特征融合卷积神经网络 | 声发射信号 | 钢球跌落实验模拟的风力涡轮机叶片翼梁低速冲击响应 | NA | NA | NA | NA |
| 14435 | 2025-03-22 |
Automated Bone Cancer Detection Using Deep Learning on X-Ray Images
2025-Apr, Surgical innovation
IF:1.2Q3
DOI:10.1177/15533506241299886
PMID:39679470
|
研究论文 | 本文提出了一种基于深度学习的自动化骨癌检测方法,使用X射线图像进行骨癌分类 | 提出了一种结合Golden Search优化算法和深度学习的计算机辅助诊断方法(GSODL-CADBCC),用于骨癌分类 | 未提及具体的数据集规模或多样性限制,也未讨论模型在其他类型医学图像上的泛化能力 | 开发一种自动化系统,用于从X射线图像中准确区分健康骨骼和癌变骨骼 | X射线图像中的骨骼 | 计算机视觉 | 骨癌 | 深度学习,Golden Search优化算法,双边滤波 | SqueezeNet,LSTM | X射线图像 | 未明确提及具体样本数量 | NA | NA | NA | NA |
| 14436 | 2025-03-22 |
Deep Learning Neural Network Based on PSO for Leukemia Cell Disease Diagnosis from Microscope Images
2025-Mar-20, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01474-x
PMID:40113730
|
研究论文 | 本文提出了一种基于粒子群优化(PSO)的深度学习神经网络方法,用于从显微镜图像中诊断白血病细胞疾病 | 结合深度学习和PSO方法进行特征提取和优化,使用多种机器学习算法进行分析,提高了白血病细胞诊断的准确性 | 未提及样本的具体数量和多样性,可能影响模型的泛化能力 | 提高白血病细胞疾病的诊断准确性 | 显微镜图像中的白血病细胞 | 计算机视觉 | 白血病 | 深度学习,粒子群优化(PSO) | GoogLeNet, ResNet-50, 决策树(DT), 支持向量机(SVM), K近邻(K-NN) | 图像 | NA | NA | NA | NA | NA |
| 14437 | 2025-03-22 |
An improved Artificial Protozoa Optimizer for CNN architecture optimization
2025-Mar-13, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107368
PMID:40112636
|
研究论文 | 本文提出了一种名为MAPOCNN的新型神经架构搜索方法,利用改进的人工原生动物优化器(APO)来优化卷积神经网络(CNN)的架构 | 引入了改进的人工原生动物优化器(MAPO),结合原生动物的趋光行为,以缓解早熟收敛的风险,从而探索更广泛的CNN架构并找到更优的解决方案 | NA | 优化卷积神经网络(CNN)的架构 | 卷积神经网络(CNN) | 机器学习 | NA | 神经架构搜索(NAS) | CNN | 图像 | 基准数据集(包括Rectangle和Mnist-random) | NA | NA | NA | NA |
| 14438 | 2025-03-22 |
Multi-scale structural similarity embedding search across entire proteomes
2025-Mar-06, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.28.640875
PMID:40093062
|
研究论文 | 本文提出了一种可扩展的结构相似性搜索策略,用于处理大量实验确定的结构和通过AI/DL方法预测的计算结构模型 | 利用蛋白质语言模型和深度神经网络架构将3D结构转换为固定长度的向量,实现高效的大规模比较 | 模型虽然能够预测单域结构之间的TM分数,但在处理多域结构时可能存在局限性 | 开发一种可扩展且高效的结构相似性搜索方法,以应对3D生物分子结构信息的快速增长 | 实验确定的结构和通过AI/DL方法预测的计算结构模型 | 生物信息学 | NA | AI/DL方法 | 深度神经网络 | 3D结构数据 | NA | NA | NA | NA | NA |
| 14439 | 2025-03-22 |
Deep Huber quantile regression networks
2025-Mar-05, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107364
PMID:40112635
|
研究论文 | 本文介绍了深度Huber分位数回归网络(DHQRN),该网络能够预测Huber分位数,并作为分位数回归神经网络(QRNN)和期望分位数回归神经网络(ERNN)的扩展 | 提出了深度Huber分位数回归网络(DHQRN),能够预测更一般的Huber分位数,并嵌套了QRNN和ERNN作为极限情况 | 未明确提及具体局限性 | 研究目的是通过深度学习算法预测概率分布的更多功能(如分位数和期望分位数),以量化预测的不确定性 | 房屋价格预测,具体案例为澳大利亚墨尔本和美国波士顿的房价 | 机器学习 | NA | 深度学习 | 深度Huber分位数回归网络(DHQRN) | 房价数据 | 未明确提及具体样本数量 | NA | NA | NA | NA |
| 14440 | 2025-03-22 |
Dynamic MRI with Locally Low-Rank Subspace Constraint: Towards 1-Second Temporal Resolution Aided by Deep Learning
2025-Feb-27, Research square
DOI:10.21203/rs.3.rs-5448452/v1
PMID:40060040
|
研究论文 | 本文提出了一种结合局部低秩子空间约束和深度学习的动态MRI重建框架,旨在提高动态对比增强成像的时空分辨率 | 结合局部低秩子空间模型和神经网络,实现了从几秒到1秒的灵活时间分辨率,显著提高了图像质量 | 未明确提及具体样本量或临床验证结果 | 解决动态MRI中空间和时间分辨率平衡的挑战,提升动态对比增强成像的质量 | 高风险的乳腺癌患者,以及头颈部和脑部MRI应用 | 医学影像处理 | 乳腺癌 | 动态对比增强MRI(DCE-MRI) | 神经网络 | MRI图像 | NA | NA | NA | NA | NA |