深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 16751 篇文献,本页显示第 15421 - 15440 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
15421 2025-02-16
Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds' Eggs
2025-Jan-21, Animals : an open access journal from MDPI IF:2.7Q1
研究论文 本文探讨了将人工智能与适当的数学算法结合,以深入理解鸟类卵的生物学特性 提出了将深度学习和人工智能应用于禽蛋形态分析的新方法,并重新评估了多种数学模型的有效性和实用性 未具体说明所提出方法的实验验证结果和实际应用效果 研究目的是通过AI和DL技术提高禽蛋的质量、生产力和市场竞争力 研究对象是禽蛋的形态特征,包括形状、重量、体积、表面积和气室计算 计算机视觉 NA 深度学习(DL) 深度学习模型 图像 未提及具体样本数量 NA NA NA NA
15422 2024-08-07
Cardiac CT-derived quantification of myocardial extracellular volume using deep learning-based reconstruction: A feasibility study
2025 Jan-Feb, Journal of cardiovascular computed tomography IF:5.5Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
15423 2025-02-16
Improving building extraction from high-resolution aerial images: Error correction and performance enhancement using deep learning on the Inria dataset
2025 Jan-Mar, Science progress IF:2.6Q2
研究论文 本研究利用深度学习技术改进从高分辨率航空图像中提取建筑物的方法,并在Inria数据集上进行了性能比较 通过消除错误数据和调整图像大小,显著提升了深度学习网络在建筑物提取任务中的性能 某些模型在特定挑战性条件下(如树木遮挡、复杂室内花园)表现不佳,容易产生误报 提高从高分辨率航空图像中提取建筑物的准确性和效率 高分辨率航空图像中的建筑物 计算机视觉 NA 深度学习 DeepLabv3+, Attention U-Net, U-Net, SE-ResNeXt-50, SE-ResNet-50, ResNeXt-50, ResNet-50, UNet++, U2Net 图像 180张高分辨率航空图像 NA NA NA NA
15424 2025-10-07
DEEP LEARNING-DRIVEN SEGMENTATION OF DENTAL IMPLANTS AND PERI-IMPLANTITIS DETECTION IN ORTHOPANTOMOGRAPHS: A NOVEL DIAGNOSTIC TOOL
2025-Mar, The journal of evidence-based dental practice IF:4.1Q1
研究论文 开发基于深度学习的牙科种植体分割和种植体周围炎检测系统,用于正畸全景片分析 首次将U-Net分割与CNN分类结合,为种植体周围炎提供自动化诊断工具 存在165个假阳性病例,模型特异性有待提升 提高种植体周围炎的诊断准确性和效率 牙科种植体和种植体周围炎 计算机视觉 牙科疾病 深度学习 CNN 医学影像 7696张正畸全景片,包含3693个种植体 Python U-Net 准确率, Dice相似系数, IoU, 精确率, 召回率, F1分数 NA
15425 2025-10-07
An interpretable ensemble model combining handcrafted radiomics and deep learning for predicting the overall survival of hepatocellular carcinoma patients after stereotactic body radiation therapy
2025-Feb-14, Journal of cancer research and clinical oncology IF:2.7Q3
研究论文 开发结合手工放射组学和深度学习的可解释集成模型,预测肝细胞癌患者接受立体定向放疗后的2年生存率 首次将手工放射组学特征与深度学习特征及临床数据融合构建集成模型,并应用后验可解释性技术阐明影像数据对预测结果的贡献 样本量相对有限(186例患者),需在更大队列中验证模型性能 预测肝细胞癌患者接受立体定向放疗后的生存结局 186例接受立体定向放疗的肝细胞癌患者 医学影像分析 肝细胞癌 CT影像分析,放射组学特征提取 CNN,集成学习 CT影像,临床数据 186例肝细胞癌患者 NA 多种卷积神经网络架构 AUC NA
15426 2025-10-07
Towards an interpretable deep learning model of cancer
2025-Feb-14, NPJ precision oncology IF:6.8Q1
观点文章 提出利用深度学习算法整合多组学数据和分子网络先验知识构建可解释性癌症模型 首次系统阐述如何利用深度学习突破实验和计算限制,构建系统层面的癌症计算模型 未提供具体模型实现细节和验证结果,属于概念性框架 开发可解释的深度学习模型以理解癌症发病机制并推动精准肿瘤学应用 癌细胞状态、分子网络、肿瘤微环境 机器学习 癌症 多组学数据整合 深度学习 多组学数据 NA NA NA NA NA
15427 2025-10-07
Triboelectric Sensors Based on Glycerol/PVA Hydrogel and Deep Learning Algorithms for Neck Movement Monitoring
2025-Feb-14, ACS applied materials & interfaces IF:8.3Q1
研究论文 本研究开发了一种基于甘油/PVA水凝胶的摩擦电传感器和深度学习算法,用于颈部运动监测 采用甘油/PVA水凝胶和硅橡胶制备柔性可拉伸摩擦电纳米发电机,通过优化浓度和厚度参数提高灵敏度至4.50 V/kPa,并首次将CNN-BiLSTM算法应用于颈部运动监测 未提及样本规模和研究对象的具体特征,缺乏跨设备验证 开发用于颈部运动监测的智能系统以预防颈椎病 人体颈部运动 传感器技术, 深度学习 颈椎病 摩擦电纳米发电机(TENG), 水凝胶制备 CNN, BiLSTM 传感器信号数据 NA NA CNN-BiLSTM混合架构 识别准确率 树莓派4B
15428 2025-10-07
BiFPN-enhanced SwinDAT-based cherry variety classification with YOLOv8
2025-Feb-13, Scientific reports IF:3.8Q1
研究论文 提出一种基于BiFPN增强的SwinDAT与YOLOv8结合的混合深度学习模型,用于樱桃品种分类 首次将BiFPN与YOLOv8n-cls框架集成,并采用Swin Transformer和可变形注意力Transformer技术增强分类性能 仅使用土耳其西地中海地区的樱桃品种数据集,未验证在其他地区的适用性 开发准确的樱桃品种自动分类方法以提升农业实践和经济效益 樱桃品种 计算机视觉 NA 深度学习 YOLOv8, Transformer 图像 来自土耳其西地中海地区的樱桃品种数据集 YOLOv8 BiFPN, SwinDAT, YOLOv8n-cls 精确率, 召回率, F1分数, 准确率 NA
15429 2025-10-07
Prediction of InSAR deformation time-series using improved LSTM deep learning model
2025-Feb-13, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种改进的LSTM深度学习模型,用于预测InSAR形变时间序列数据 提出了改进的LSTM模型,相比传统RNN和LSTM模型在形变预测精度上有显著提升 研究仅基于印度Khetri铜矿带单一矿区的26个TSX/TDX数据集,需要更多数据验证模型泛化能力 预测采矿引起的地表形变时间序列,为矿山沉降监测和管理提供技术支持 矿山地表形变监测数据 机器学习 NA InSAR(干涉合成孔径雷达)技术 LSTM, RNN, mLSTM 时间序列数据 26个TSX/TDX数据集 NA LSTM, RNN, 改进LSTM 准确率, RMS误差 NA
15430 2025-10-07
Functionally characterizing obesity-susceptibility genes using CRISPR/Cas9, in vivo imaging and deep learning
2025-Feb-13, Scientific reports IF:3.8Q1
研究论文 开发了一种结合CRISPR/Cas9基因编辑、活体荧光成像和深度学习图像分析的流程,用于系统表征肥胖易感基因对斑马鱼幼鱼脂质积累和心脏代谢特征的影响 首次将CRISPR/Cas9基因编辑、活体成像和深度学习分析整合到斑马鱼模型中,用于系统功能表征肥胖易感基因 在10 dpf时无法检测到CRISPR/Cas9诱导突变对脂肪细胞脂质积累的影响,且8 dpf时的摄食效应与哺乳动物研究结果不一致 系统表征肥胖易感基因在脂肪细胞脂质积累和其他心脏代谢特征中的功能作用 斑马鱼幼鱼 计算机视觉, 深度学习 肥胖症, 心脏代谢疾病 CRISPR/Cas9基因编辑, 荧光成像, 深度学习图像分析 深度学习 图像 脂质积累实验n=275,基因突变实验n=1014,摄食行为实验n=1127 NA NA NA NA
15431 2025-10-07
Unraveling microglial spatial organization in the developing human brain with DeepCellMap, a deep learning approach coupled with spatial statistics
2025-Feb-13, Nature communications IF:14.7Q1
研究论文 开发了一种名为DeepCellMap的深度学习工具,用于分析发育中人脑中小胶质细胞的空间组织 将多尺度图像处理与先进的空间和聚类统计相结合,能够绘制正常和病理状态下小胶质细胞的组织结构 NA 研究发育中人脑中小胶质细胞的空间组织模式 人脑发育过程中的小胶质细胞 数字病理学 脑发育相关疾病 多尺度图像处理,空间统计,聚类分析 深度学习 组织切片图像 NA NA NA NA NA
15432 2025-10-07
Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review
2025-Feb-13, BMC medical informatics and decision making IF:3.3Q2
系统综述 系统回顾数字健康技术和人工智能算法在慢性阻塞性肺疾病(COPD)中的应用现状 首次系统梳理COPD领域中数字健康技术与AI算法的结合应用,识别关键应用领域和主流算法类型 仅纳入两个数据库的研究,可能存在发表偏倚;未进行meta分析;纳入研究质量不均 探索数字健康技术在COPD中的数据种类、AI分析算法及主要应用领域 已发表的关于AI算法在COPD数字健康管理中的应用研究 数字病理学 慢性阻塞性肺疾病 数字健康技术 机器学习,深度学习 临床数据,患者报告结果,环境/生活方式数据 41项符合纳入标准的研究(从265项初筛研究中筛选) NA 支持向量机,Boosting算法,深度神经网络,卷积神经网络 准确率,性能指标 NA
15433 2025-10-07
Robust CRW crops leaf disease detection and classification in agriculture using hybrid deep learning models
2025-Feb-13, Plant methods IF:4.7Q1
研究论文 提出一种用于玉米、水稻和小麦作物叶片病害检测的混合深度学习模型 设计了一种细长型CNN架构,包含不同尺寸的并行卷积层以准确定位多尺度病变区域 NA 开发一种适用于多种作物的通用病害检测模型,解决农民资源有限和数字素养低的问题 玉米(C)、水稻(R)和小麦(W)作物的叶片病害 计算机视觉 植物病害 深度学习 CNN 图像 NA NA Slender-CNN, VGG19, EfficientNetb6, ResNeXt, DenseNet201, AlexNet, YOLOv5, MobileNetV3 准确率 NA
15434 2025-10-07
Prediction of cognitive conversion within the Alzheimer's disease continuum using deep learning
2025-Feb-13, Alzheimer's research & therapy
研究论文 开发深度学习模型预测阿尔茨海默病连续谱内认知转换,以指导临床治疗决策 首次使用包含五类变量集的纵向数据开发深度学习模型,并建立简约模型保持良好预测性能 样本量随时间推移减少,仅使用ADNI队列数据可能限制模型泛化能力 预测阿尔茨海默病连续谱内的认知转换,为治疗分配决策提供指导 阿尔茨海默病神经影像倡议(ADNI)队列中的607名个体 机器学习 阿尔茨海默病 神经影像学,神经心理学评估,实验室检测 深度学习 纵向多模态数据 基线607人,12个月随访538人,24个月482人,36个月268人,48个月280人 NA NA AUC NA
15435 2025-10-07
Comparison of Deep Learning Models for Voice Disorder Classification Using Kymographic Images
2025-Feb-12, Journal of voice : official journal of the Voice Foundation IF:2.5Q1
研究论文 本研究比较了五种深度学习模型在基于声门图图像进行嗓音障碍分类的性能 首次系统比较多种预训练深度学习模型在声门图图像分类任务中的表现,发现DenseNet121模型在嗓音障碍分类中表现最佳 研究仅使用了BAGLS数据集,样本来源相对单一,需要进一步研究验证模型的泛化能力 开发基于深度学习的自动化嗓音障碍分类方法,辅助临床诊断 嗓音障碍患者的声门图图像 计算机视觉 嗓音障碍 高速视频内窥镜成像,声门图生成技术 CNN 图像 来自BAGLS数据集的高速录音生成的声门图图像 NA AlexNet, DenseNet121, Xception, Inceptionv3, ResNet50v2 准确率, 多种模型评估指标 NA
15436 2025-10-07
Deep learning-based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data
2025-Feb-12, Annals of the rheumatic diseases IF:20.3Q1
研究论文 开发基于多模态深度学习的聚类框架,利用膝骨关节炎多组学数据识别患者内型并对全膝关节置换术后反应进行分类 首次提出整合三种匹配生物流体(血浆、滑液、尿液)的多组学数据,采用多模态变分自编码器与K均值聚类相结合的新方法 样本量相对有限(414例患者),仅评估了1年随访结果 识别膝骨关节炎的分子内型并预测全膝关节置换术后疼痛/功能反应 414例原发性膝骨关节炎患者 机器学习 骨关节炎 microRNA测序, 代谢组学 变分自编码器, K-means聚类 多组学数据, 临床数据 414例膝骨关节炎患者,匹配的血浆、滑液和尿液样本 NA 多模态变分自编码器 WOMAC疼痛/功能评分分类性能 NA
15437 2025-10-07
A fully automated U-net based ROIs localization and bone age assessment method
2025-Jan-03, Mathematical biosciences and engineering : MBE
研究论文 提出一种基于U-net和InceptionResNetV2的全自动骨龄评估方法,实现ROI定位和骨龄预测 结合基于ROI的方法(TW3方法)和全局特征方法(GP方法)的优势,提供高可解释性和准确性 NA 开发全自动骨龄评估方法 青少年骨骼发育 计算机视觉 生长发育评估 深度学习 U-net, InceptionResNetV2 医学图像 公共RSNA数据集和内部数据集 NA U-net, InceptionResNetV2 定位精度, 平均绝对误差 NA
15438 2025-10-07
Epileptic seizure detection in EEG signals via an enhanced hybrid CNN with an integrated attention mechanism
2025-Jan, Mathematical biosciences and engineering : MBE
研究论文 提出一种结合CNN、BiGRU和CBAM的混合深度学习框架,用于癫痫发作的EEG信号检测 首次将卷积块注意力模块(CBAM)与CNN-BiGRU混合架构结合,优化EEG信号中关键时空特征的提取 仅使用公开数据集进行验证,未在临床实时环境中测试 开发高精度的癫痫发作自动检测方法 癫痫患者的脑电图(EEG)信号 机器学习 癫痫 脑电图(EEG)信号分析 CNN, BiGRU, 注意力机制 EEG信号 公开EEG数据集 NA CNN-BiGRU-CBAM混合架构 准确率, 灵敏度, 特异性 NA
15439 2025-10-07
COVID-19 recognition from chest X-ray images by combining deep learning with transfer learning
2025 Jan-Dec, Digital health IF:2.9Q2
研究论文 提出一种结合深度学习和迁移学习的Covid-DenseNet模型,用于从胸部X光图像中识别COVID-19 通过迁移学习提取多尺度特征,结合注意力机制增强重要特征,并设计多尺度融合架构提高建模效率 NA 开发计算复杂度更低、泛化能力更强的COVID-19检测模型 胸部X光图像 计算机视觉 COVID-19 深度学习,迁移学习 CNN 图像 三个公开胸部放射学数据集,包含不同样本分布特征和样本量 NA DenseNet, Covid-DenseNet 识别准确率 NA
15440 2025-10-07
Use of artificial intelligence for gestational age estimation: a systematic review and meta-analysis
2025, Frontiers in global women's health
系统评价与荟萃分析 本文通过系统评价和荟萃分析评估人工智能模型在超声图像中估算孕龄的准确性 首次对AI模型在孕龄估算中的应用进行系统性量化评估,比较了不同孕期和AI模型的性能差异 纳入研究数量有限(17篇),部分研究存在偏倚风险,不同研究间异质性较高 评估人工智能模型在孕龄估算中的准确性,并与超声金标准进行比较 使用人工智能模型进行孕龄估算的临床研究 医学人工智能 产科疾病 超声成像,人工智能模型 CNN, DNN 2D图像,盲扫视频 17项研究(其中10项纳入荟萃分析),涉及高收入国家、中高收入国家和中低收入国家数据 NA CNN, DNN 平均误差(天),95%置信区间,异质性指数(I²) NA
回到顶部