深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 264 篇文献,本页显示第 141 - 160 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
141 2024-12-11
Speech based suicide risk recognition for crisis intervention hotlines using explainable multi-task learning
2025-Feb-01, Journal of affective disorders IF:4.9Q1
研究论文 本文研究了基于可解释多任务学习的语音危机干预热线自杀风险识别方法 提出了基于多任务学习和深度学习的性别辅助语音危机识别方法,并通过数据和理论双重驱动提升模型效果 样本量有限且忽略了其他模态的信息 提升危机干预热线的有效性,通过语音信号和深度学习辅助危机评估 危机干预热线中的自杀风险识别 机器学习 NA 深度学习 多任务学习 语音 构建了一个危机干预热线自杀风险语音数据集,样本量有限
142 2024-12-11
EMR-LIP: A lightweight framework for standardizing the preprocessing of longitudinal irregular data in electronic medical records
2025-Feb, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文介绍了一种轻量级的电子病历纵向不规则数据预处理框架EMR-LIP,旨在提高研究效率、一致性、可重复性和可比性 EMR-LIP通过模块化预处理流程和更细粒度的变量分类,设计了针对每种类型数据的特定预处理技术,提供了一种标准化的预处理方法 NA 优化电子病历中纵向不规则数据的预处理,提高临床预测模型的性能 电子病历中的纵向不规则数据 机器学习 NA 深度学习 LSTM, GRU 文本 两个公共电子病历数据库MIMIC-IV和eICU-CRD
143 2024-12-11
CGPDTA: An Explainable Transfer Learning-Based Predictor With Molecule Substructure Graph for Drug-Target Binding Affinity
2025-Jan-05, Journal of computational chemistry IF:3.4Q2
研究论文 本文介绍了一种基于可解释迁移学习的深度学习框架CGPDTA,用于预测药物-靶点结合亲和力 CGPDTA通过结合药物-药物和蛋白质-蛋白质相互作用知识,利用分子子结构图和蛋白质口袋序列来增强预测能力和可解释性 NA 开发一种更准确且可解释的药物-靶点结合亲和力预测方法 药物-靶点结合亲和力 机器学习 NA 迁移学习 深度学习框架 分子子结构图,蛋白质口袋序列 NA
144 2024-12-11
Synthetic temporal bone CT generation from UTE-MRI using a cycleGAN-based deep learning model: advancing beyond CT-MR imaging fusion
2025-Jan, European radiology IF:4.7Q1
研究论文 本研究开发了一种基于CycleGAN的深度学习模型,用于从超短回波时间磁共振成像(UTE-MRI)生成合成的时间骨CT图像 创新点在于使用CycleGAN模型从UTE-MRI生成合成的时间骨CT图像,解决了MRI在定位时间骨CT解剖标志时的固有局限性 对于五个主要解剖结构的生成成功率较低,范围在24%到83%之间 开发一种深度学习模型,从UTE-MRI生成合成的时间骨CT图像,以解决MRI在定位时间骨CT解剖标志时的局限性 时间骨CT图像的合成生成 计算机视觉 NA CycleGAN CycleGAN 图像 102名患者(训练数据集54名,验证数据集48名)
145 2024-12-11
Detection of Brain Tumor Employing Residual Network-based Optimized Deep Learning
2025, Current computer-aided drug design IF:1.5Q3
研究论文 本文提出了一种基于残差网络优化的深度学习方法,用于脑肿瘤的自动检测和分割 使用改进的ResNet50模型进行肿瘤检测,并提出基于ResUNet模型的卷积神经网络进行分割,提高了检测和分割的准确性 NA 提高脑肿瘤检测和分割的自动化和准确性 脑肿瘤的自动检测和分割 计算机视觉 脑肿瘤 深度学习 ResNet50, ResUNet 图像 110名患者的预对比、FLAIR和后对比MRI图像
146 2024-12-11
BCDPi: An interpretable multitask deep neural network model for predicting chemical bioconcentration in fish
2025-Jan-01, Environmental research IF:7.7Q1
研究论文 本文提出了一种可解释的多任务深度神经网络模型BCDPi,用于预测化学物质在鱼类中的生物富集潜力 该研究的创新点在于开发了一种多任务深度学习模型,能够预测不同类别的化学物质生物富集潜力,并使用SHAP技术进行模型解释 NA 研究目的是开发一种准确且可解释的方法来预测化学物质的生物富集潜力,以评估环境风险和毒理学影响 研究对象是化学物质的生物富集潜力及其分子物理化学性质 机器学习 NA 深度学习 多任务深度神经网络 化学物质数据 NA
147 2024-12-11
Comparative analysis of Ki-67 labeling index morphometry using deep learning, conventional image analysis, and manual counting
2025-Jan, Translational oncology IF:4.5Q1
研究论文 本文比较了使用深度学习、传统图像分析和手动计数方法对Ki-67标记指数的形态学分析 本文首次比较了多种数字图像分析系统与手动计数方法在Ki-67计数中的表现,并发现不同系统在不同标注方法下具有不同的准确性 本文仅针对胃癌患者的组织微阵列进行了研究,结果可能不适用于其他类型的癌症 评估和比较不同数字图像分析系统在Ki-67计数中的能力 胃癌患者的Ki-67免疫组化染色组织微阵列 数字病理学 胃癌 数字图像分析 NA 图像 239个组织微阵列核心样本
148 2024-12-11
High-resolution spatiotemporal prediction of PM2.5 concentration based on mobile monitoring and deep learning
2025-Jan-01, Environmental pollution (Barking, Essex : 1987)
研究论文 本文提出了一种基于移动监测数据和深度学习的高分辨率时空PM2.5浓度预测方法 本文创新性地结合了移动监测数据和深度学习技术,提出了一种基于LightGBM和CNN-Transformer模型的高分辨率PM2.5浓度预测方法 本文的局限性在于仅在沧州地区进行了验证,未来需要在更多地区进行验证以评估其普适性 研究目的是开发一种高分辨率的PM2.5浓度时空预测方法,以支持城市空气污染控制和公共健康 研究对象是城市中的PM2.5浓度分布 机器学习 NA 深度学习 CNN-Transformer 数据 使用了来自中国沧州的实际数据进行验证
149 2024-12-11
Improving PM2.5 and PM10 predictions in China from WRF_Chem through a deep learning method: Multiscale depth-separable UNet
2025-Jan-01, Environmental pollution (Barking, Essex : 1987)
研究论文 本文开发了一种名为多尺度深度可分离UNet(MDS-UNet)的深度学习模型,用于提高WRF_Chem在中国PM2.5和PM10浓度预测的准确性 提出了多尺度深度可分离UNet(MDS-UNet)模型,能够捕捉模型预测与观测之间的复杂非线性误差,从而提高PM2.5和PM10浓度预测的准确性 NA 提高WRF_Chem在中国PM2.5和PM10浓度预测的准确性 PM2.5和PM10浓度预测 机器学习 NA 深度学习 UNet 数值数据 涉及中国六个主要城市群的PM2.5和PM10浓度预测数据
150 2024-12-11
Artificial intelligence-powered image analysis: A paradigm shift in infectious disease detection
2025-Jan, Artificial intelligence in medicine IF:6.1Q1
研究论文 本研究介绍了基于人工智能的创新方法,通过分析医学影像提高传染病诊断的准确性 本研究首次将Hypersoft Set(HSS)与模糊上下文结合,利用多准则决策(MCDM)框架开发数学模型,用于从图像中识别潜在的传染病 NA 提高传染病诊断的准确性,并展示其在机器学习、深度学习和模式识别领域的广泛应用潜力 传染病及其在不同国家的独特挑战 机器学习 NA 多准则决策(MCDM)框架 数学模型 图像 NA
151 2024-12-11
A Multi-task learning U-Net model for end-to-end HEp-2 cell image analysis
2025-Jan, Artificial intelligence in medicine IF:6.1Q1
研究论文 本文提出了一种基于多任务学习的U-Net模型,用于端到端的HEp-2细胞图像分析 本文的创新点在于提出了一种多任务学习的U-Net模型,能够同时处理细胞强度分类、细胞分割和模式分类三个相关任务 NA 本文的研究目的是开发一种能够同时处理多个相关任务的深度学习模型,以提高HEp-2细胞图像分析的诊断准确性 本文的研究对象是HEp-2细胞图像的强度分类、细胞分割和模式分类 计算机视觉 自身免疫性疾病 深度学习 U-Net 图像 本文使用了最大的公开HEp-2图像数据集之一进行实验
152 2024-12-11
Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology
2025, Current computer-aided drug design IF:1.5Q3
研究论文 本研究通过整合网络药理学分析和深度学习技术,探索血根碱在治疗骨质疏松中的分子机制 本研究首次将网络药理学分析与深度学习技术结合,揭示血根碱在治疗骨质疏松中的潜在靶点和分子机制 本研究主要基于数据库预测和体外细胞实验,缺乏体内实验验证 揭示血根碱在治疗骨质疏松中的分子机制 血根碱在治疗骨质疏松中的潜在靶点和分子机制 生物信息学 骨质疏松 网络药理学分析、深度学习技术、分子对接、基因集变异分析 DeepPurpose算法 基因表达数据 前成骨细胞MC3T3-E1细胞
153 2024-12-11
Integrating Faith and Learning Using a Biblical Concept-Based Curriculum
2025 Jan-Mar 01, Journal of Christian nursing : a quarterly publication of Nurses Christian Fellowship IF:0.4Q4
研究论文 本文探讨了在护理教育中整合信仰与学习(IFL)的历史背景,并提出了基于圣经的概念课程(BBCC),以促进深度学习、批判性思维和以学生为中心的学习 提出了基于圣经的概念课程(BBCC),并通过学生评估验证了其有效性 未详细说明BBCC的具体内容和实施细节 探讨在护理教育中成功整合信仰与学习的方法 护理教育中的信仰与学习整合 NA NA NA NA NA NA
154 2024-12-10
CT Quantification of Interstitial Lung Abnormality and Interstitial Lung Disease: From Technical Challenges to Future Directions
2025-Jan-01, Investigative radiology IF:7.0Q1
综述 本文综述了间质性肺疾病(ILD)和间质性肺异常(ILA)的CT定量分析现状,探讨了技术挑战及未来发展方向 强调了机器学习和深度学习在定量影像中的应用,以提高诊断和管理精度 传统视觉评估存在读片者间的变异性,ILA的定义依赖于主观阈值 探讨CT定量分析在ILD和ILA中的应用及未来发展方向 间质性肺疾病(ILD)和间质性肺异常(ILA) 计算机视觉 肺部疾病 CT 机器学习,深度学习 影像 NA
155 2024-12-10
Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain
2025-Jan-01, Investigative radiology IF:7.0Q1
综述 本文综述了深度学习重建(DLR)和定量MRI技术在脑部MRI中的临床应用,超越了传统的结构MRI 本文介绍了深度学习重建(DLR)和定量MRI技术在脑部MRI中的应用,这些技术能够加速成像并提高图像质量,同时提供更精确的脑组织参数计算 本文讨论了深度学习重建(DLR)可能的不稳定性和定量MRI中的量化和偏差限制 探讨深度学习重建(DLR)和定量MRI技术在脑部MRI中的临床应用,超越传统结构成像 脑部MRI成像技术及其在临床诊断中的应用 计算机视觉 NA 深度学习重建(DLR),定量MRI技术 深度神经网络 图像 NA
156 2024-12-09
Simultaneous quantitative analysis of multiple metabolites using label-free surface-enhanced Raman spectroscopy and explainable deep learning
2025-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究结合无标记表面增强拉曼光谱(SERS)和深度学习技术,利用SHAP解释模型,实现了多种代谢物的同步定量分析 首次将无标记SERS与深度学习结合,并利用SHAP解释模型,提供可视化的预测解释 NA 开发一种新的代谢物分析方法,用于临床诊断和个性化医疗 尿酸、黄嘌呤、次黄嘌呤和肌酐等代谢物 生物医学工程 NA 表面增强拉曼光谱(SERS) 深度神经网络 光谱数据 混合溶液中的目标代谢物
157 2024-12-09
Fluorescence spectroscopy combined with multilayer perceptron deep learning to identify the authenticity of monofloral honey-Rape honey
2025-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本文利用荧光光谱结合多层感知器深度学习技术,无需预处理或特征提取,快速准确地鉴定了油菜蜂蜜的真实性 首次将荧光光谱与多层感知器深度学习结合,用于蜂蜜真实性鉴定,无需预处理或特征提取 仅限于油菜蜂蜜的真实性鉴定,未涉及其他类型的蜂蜜 开发一种快速、简便且无损的蜂蜜真实性鉴定技术 油菜蜂蜜的真实性 机器学习 NA 荧光光谱 多层感知器 (MLP) 荧光强度数据 91个真实和掺假的蜂蜜样本
158 2024-12-09
Enhancing soil nitrogen measurement via visible-near infrared spectroscopy: Integrating soil particle size distribution with long short-term memory models
2025-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本文提出了一种结合土壤颗粒大小分布(PSD)和可见-近红外光谱(Vis-NIR)的深度学习方法,用于提高土壤氮含量的测量精度 本文创新性地将土壤颗粒大小分布与可见-近红外光谱数据结合,通过长短期记忆模型(LSTM)提高了土壤氮含量测量的准确性和可靠性 本文未详细讨论该方法在不同土壤类型和环境条件下的适用性 研究目的是提高土壤氮含量的测量精度,为农业管理和生态环境提供高质量的数据支持 研究对象是土壤氮含量及其与土壤颗粒大小分布和可见-近红外光谱的关系 机器学习 NA 可见-近红外光谱(Vis-NIR) 长短期记忆模型(LSTM) 光谱数据 使用了LUCAS数据集中的样本
159 2024-12-09
Plasma treated bimetallic nanofibers as sensitive SERS platform and deep learning model for detection and classification of antibiotics
2025-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本文报道了一种通过氧等离子体处理的二元金属纳米纤维作为高灵敏度的SERS平台,并结合深度学习模型用于抗生素的检测和分类 提出了一种新的氧等离子体处理的二元金属纳米纤维SERS平台,具有高灵敏度和可重复性,并结合了深度学习模型进行有效分类 NA 开发一种高灵敏度和成本效益的SERS基底,用于在实际环境中检测痕量浓度的分析物 二元金属纳米纤维SERS平台和深度学习模型 NA NA SERS 人工神经网络(ANN) 光谱数据 涉及两种抗生素 - 氟康唑(FLU)和林可霉素(LIN)
160 2024-12-09
Alg-MFDL: A multi-feature deep learning framework for allergenic proteins prediction
2025-Feb, Analytical biochemistry IF:2.6Q2
研究论文 本文开发了一种名为Alg-MFDL的多特征深度学习框架,用于预测过敏蛋白 结合预训练的蛋白质语言模型和传统手工特征,实现更全面的蛋白质表示 NA 开发高效可靠的计算方法来识别过敏蛋白 过敏蛋白的识别 机器学习 NA 卷积神经网络 CNN 蛋白质数据 使用基准数据集进行独立验证
回到顶部