深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202501-202512] [清除筛选条件]
当前共找到 18870 篇文献,本页显示第 17961 - 17980 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
17961 2025-10-07
Femtojoule optical nonlinearity for deep learning with incoherent illumination
2025-Jan-31, Science advances IF:11.7Q1
研究论文 本文提出了一种与不相干照明兼容的非线性光学微器件阵列,用于实现低功耗光学神经网络 通过将液晶单元与硅光电二极管在单像素级别集成,实现了低至100飞焦耳/像素的超低开关能量非线性光学器件 NA 开发适用于光学神经网络的高能效、高度并行的光学非线性组件 光学神经网络中的非线性激活函数器件 计算机视觉 NA 光学器件集成技术 光学神经网络 光学图像 超过50万个像素的器件阵列 NA 多层神经网络 开关能量(100飞焦耳/像素) NA
17962 2025-10-07
Versatile waste sorting in small batch and flexible manufacturing industries using deep learning techniques
2025-Jan-30, Scientific reports IF:3.8Q1
研究论文 本研究提出基于Segment Anything Model系列架构的两步式通用视觉废物分拣方法 结合SAM系列模型进行废物对象提取与多种分类架构进行精确分拣,无需开发专用检测分割算法 NA 评估深度学习架构在机器人废物分拣中处理高度可变物体的能力 工业废物分拣 计算机视觉 NA 深度学习 SAM系列模型,CNN 图像 NA NA Segment Anything Model,FastSAM,MobileSAMv2,EfficientSAM,MobileNetV2,VGG19,DenseNet,SqueezeNet,ResNet,Inception-v3 准确率 NA
17963 2025-10-07
Multi-modal framework for battery state of health evaluation using open-source electric vehicle data
2025-Jan-29, Nature communications IF:14.7Q1
研究论文 提出基于深度学习的多模态框架,利用开源电动汽车数据评估电池健康状态 首次分析300辆电动汽车三年运行数据,揭示现场数据与实验室数据的差异对健康状态评估的影响,并提出多模态深度学习框架 研究基于特定电动汽车数据集,未明确说明模型在其他车型或环境下的泛化能力 开发高效、准确且成本效益高的电池健康状态评估方法 300辆不同类型电动汽车的电池系统 机器学习 NA 深度学习 深度学习模型 多模态传感器数据,历史车辆运行数据 300辆电动汽车的三年运行数据 NA 多模态深度学习框架 NA NA
17964 2025-10-07
Enhanced hybrid attention deep learning for avocado ripeness classification on resource constrained devices
2025-Jan-29, Scientific reports IF:3.8Q1
研究论文 提出一种混合注意力卷积神经网络模型用于在资源受限设备上实现鳄梨成熟度分类 结合空间、通道和自注意力模块的混合注意力机制,在保持模型轻量化的同时增强局部特征并捕获全局关系 ShuffleNetV1版本测试准确率仅82.89%,不足以满足实际应用需求 开发适用于资源受限设备的鳄梨成熟度分类深度学习模型 鳄梨果实 计算机视觉 NA 深度学习 CNN 图像 14000张图像 TensorFlow, TensorFlow Lite EfficientNet-B3, ShuffleNetV1, MobileNetV3 Large 准确率 智能手机(具体型号未指定)
17965 2025-10-07
Learning by making - student-made models and creative projects for medical education: systematic review with qualitative synthesis
2025-Jan-29, BMC medical education IF:2.7Q1
系统综述 对医学生通过制作创意项目(如手工模型、绘图和概念图)进行学习的效果进行系统评价和定性综合 首次系统评价创意项目式学习对医学生元认知和知识获取的影响,并识别出增强学习、协作学习和深度学习等关键主题 纳入研究数量有限(17项),存在任务要求高、认知情感强度大、与学生专业身份不匹配等挑战 评估创意项目式学习在医学教育中对学生元认知和知识获取的影响 医学生 医学教育 NA 系统评价、内容分析、叙事综合 NA 定量、定性和混合方法研究数据 17项研究(2010-2022年发表) NA NA 混合方法评估工具(MMAT) NA
17966 2025-10-07
Enhancing furcation involvement classification on panoramic radiographs with vision transformers
2025-Jan-29, BMC oral health IF:2.6Q1
研究论文 本研究评估了Vision Transformer在全景X光片上分类根分叉病变的性能,并与传统深度学习模型进行比较 首次将Vision Transformer应用于根分叉病变分类任务,并证明其优于传统深度学习模型 研究样本量相对有限,仅包含1,568张牙齿图像 评估Vision Transformer在全景X光片上分类根分叉病变的性能 从506张全景X光片中获取的1,568张牙齿图像 计算机视觉 牙科疾病 全景X光成像 Vision Transformer, MLP, CNN 医学图像 1,568张牙齿图像(来自506张全景X光片) NA Vision Transformer, VGGNet, GoogLeNet, MLP 准确率, 精确率, 召回率, F1分数, 交叉熵损失, AUC NA
17967 2025-10-07
Deep Learning Prediction of Drug-Induced Liver Toxicity by Manifold Embedding of Quantum Information of Drug Molecules
2025-Jan, Pharmaceutical research IF:3.5Q2
研究论文 本文提出了一种通过分子表面流形嵌入量子信息来预测药物诱导肝毒性的深度学习方法 利用分子表面电子属性的流形嵌入作为分子表示,将量子信息编码用于深度学习的药物毒性预测 NA 开发基于深度学习的药物诱导肝毒性预测方法 药物分子 机器学习 药物性肝损伤 量子化学计算,流形嵌入 深度学习 分子电子属性数据 NA NA NA 交叉验证 NA
17968 2025-10-07
Automated Deep Learning-Based Detection and Segmentation of Lung Tumors at CT
2025-Jan, Radiology IF:12.1Q1
研究论文 开发并评估基于集成深度学习的模型,用于自动检测和分割CT扫描中的肺部肿瘤 采用3D U-Net图像多分辨率集成方法平衡体积上下文与分辨率,实现稳健的肿瘤检测和分割 回顾性研究设计,需要进一步前瞻性验证 自动化CT扫描中肺部肿瘤的识别和分割 CT模拟扫描和临床肺部肿瘤分割数据 计算机视觉 肺癌 CT扫描 深度学习 3D医学图像 1,504个CT扫描用于训练,150个CT扫描用于测试 NA 3D U-Net 灵敏度, 特异度, 假阳性率, Dice相似系数 NA
17969 2025-10-07
Deep Learning-Based Identification of Echocardiographic Abnormalities From Electrocardiograms
2025-Jan, JACC. Asia
研究论文 开发基于深度学习的模型,从心电图综合预测超声心动图异常 首次使用深度学习模型从心电图全面预测12种超声心动图发现,涵盖左心异常、瓣膜性心脏病和右心异常 研究仅包含8个中心的数据,外部验证中心较少 开发能够从心电图全面预测超声心动图异常的深度学习模型 229,439对配对的心电图和超声心动图数据集 机器学习 心血管疾病 心电图,超声心动图 CNN,逻辑回归 心电图信号,超声心动图数据 229,439对配对数据,来自8个中心 NA 卷积神经网络 AUC,准确率,灵敏度,特异性 NA
17970 2025-10-07
Automated recognition and segmentation of lung cancer cytological images based on deep learning
2025, PloS one IF:2.9Q1
研究论文 基于YOLOv8算法开发用于肺癌细胞学图像自动识别和分割的深度学习模型 首次将YOLOv8算法应用于肺癌细胞学图像的实例分割,实现像素级标注和快速定位 NA 开发自动化的肺癌细胞学图像识别和分割方法,提高诊断效率和一致性 肺部病变的细胞学图像,包括胸水细胞学和支气管肺泡灌洗液细胞学图像 计算机视觉 肺癌 细胞学检查 YOLO 图像 NA NA YOLOv8 平均像素精度, 平均交并比, 准确率, AUC NA
17971 2025-10-07
GGSYOLOv5: Flame recognition method in complex scenes based on deep learning
2025, PloS one IF:2.9Q1
研究论文 提出一种基于深度学习的复杂场景火焰识别方法GGSYOLOv5 在YOLOv5网络中引入全局注意力机制和无参数注意力机制,并使用分组随机卷积替换原始卷积 NA 开发能够在复杂场景中实时准确识别火焰的检测系统 火焰图像 计算机视觉 NA 深度学习 CNN 图像 NA PyTorch YOLOv5, GGSYOLOv5 准确率, FPS Jetson Nano嵌入式开发板
17972 2024-11-24
[Ecological sustainability of deep learning in pathology : A modeling study]
2025-Feb, Pathologie (Heidelberg, Germany)
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
17973 2025-02-01
Bayesian deep learning applied to diabetic retinopathy with uncertainty quantification
2025-Jan-30, Heliyon IF:3.4Q1
研究论文 本文提出了一种基于贝叶斯深度学习的糖尿病视网膜病变分类方法,并通过不确定性量化提高了诊断的准确性和可靠性 使用贝叶斯卷积神经网络(CNN)结合变分推断(VI)和蒙特卡洛dropout(MC-dropout)方法,量化模型预测的不确定性 未提及具体局限性 提高糖尿病视网膜病变分类的准确性和可靠性 糖尿病视网膜病变(DR) 医学影像分析 糖尿病视网膜病变 贝叶斯深度学习 CNN, BCNN-VI, BCNN-MC-dropout 图像 APTOS 2019和Messidor-2两个基准数据集 NA NA NA NA
17974 2025-01-31
Monitoring nap deprivation-induced fatigue using fNIRS and deep learning
2025-Dec, Cognitive neurodynamics IF:3.1Q2
研究论文 本文利用便携式fNIRS系统和深度学习模型监测由午睡剥夺引起的疲劳状态,并提出了一种新的1D修订CNN-ResNet网络用于疲劳状态分类 提出了一种基于双层通道衰减残差块的新型1D修订CNN-ResNet网络,用于处理fNIRS信号数据的高维度和多通道特性 NA 监测和分类由午睡剥夺引起的疲劳状态,探索通过运动刺激强制唤醒疲劳受试者的可行性 由午睡剥夺引起的疲劳状态 机器学习 NA fNIRS 1D revised CNN-ResNet fNIRS信号数据 NA NA NA NA NA
17975 2025-01-31
A multi-dimensional student performance prediction model (MSPP): An advanced framework for accurate academic classification and analysis
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种多维学生表现预测模型(MSPP),旨在通过深度学习和先进的数据预处理技术提高学生学术分类的准确性 MSPP模型结合了自适应超参数调整和先进的图神经网络层,能够处理不平衡和时间序列的教育数据集,并通过AI特征提供可解释性 NA 提高学生表现预测的准确性,以支持定制化干预措施,提升学习效果 学生学术数据 机器学习 NA 深度学习 图神经网络(GNN) 结构化训练记录 NA NA NA NA NA
17976 2025-01-31
An easy-to-use three-dimensional protein-structure-prediction online platform "DPL3D" based on deep learning algorithms
2025-Jun, Current research in structural biology IF:2.7Q3
研究论文 本文介绍了一个基于深度学习算法的易于使用的三维蛋白质结构预测在线平台DPL3D 开发了一个用户友好的平台DPL3D,能够预测和可视化突变蛋白质的三维结构,并集成了多种先进的蛋白质结构预测软件 平台依赖于现有的蛋白质晶体结构数据,对于缺乏这些数据的蛋白质,预测准确性可能受限 开发一个易于使用的在线平台,用于预测和可视化突变蛋白质的三维结构,以促进生物发现 突变蛋白质的三维结构 生物信息学 NA 深度学习算法 AlphaFold 2, RoseTTAFold, RoseTTAFold All-Atom, trRosettaX-Single 蛋白质晶体结构数据 210,180个分子结构,包括52,248个人类蛋白质 NA NA NA NA
17977 2025-01-31
Multimodal Deep Learning for Differentiating Bacterial and Fungal Keratitis Using Prospective Representative Data
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本研究开发并评估了使用来自南印度的前瞻性代表性数据集区分细菌性和真菌性角膜炎的多模态机器学习模型 使用前瞻性、连续收集的代表性数据集(MADURAI数据集)开发了三种预测模型,并比较了它们的性能,强调了使用此类数据进行模型训练和评估的重要性 多模态模型相比计算机视觉模型并未显著提升性能 区分细菌性和真菌性角膜炎 599名在印度Aravind眼科医院诊断为急性感染性角膜炎的患者 计算机视觉 角膜炎 深度学习 EfficientNet 图像和临床数据 599名患者 NA NA NA NA
17978 2025-01-31
Deep-Reticular Pseudodrusen-Net: A 3-Dimensional Deep Network for Detection of Reticular Pseudodrusen on OCT Scans
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本文提出了一种名为Deep-RPD-Net的三维深度学习网络,用于在光谱域OCT扫描中检测网状假性玻璃膜疣(RPD),并解释了其决策过程,同时与基线方法进行了比较 Deep-RPD-Net结合了半监督学习(SSL)技术,利用未标记的OCT扫描数据改进模型性能,并在解释性方面表现优异 研究依赖于特定数据集(AREDS2和DAAMD),可能在其他数据集上的泛化能力有限 开发一种能够准确检测OCT扫描中RPD的深度学习模型 OCT扫描中的网状假性玻璃膜疣(RPD) 计算机视觉 老年性黄斑变性 半监督学习(SSL) 3D深度学习网络 OCT扫描图像 476名参与者(315名来自AREDS2,161名来自DAAMD),共2783张OCT扫描(826张标记的AREDS2数据和1366张标记的DAAMD数据) NA NA NA NA
17979 2025-01-31
Automated Quantification of Retinopathy of Prematurity Stage via Ultrawidefield OCT
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本研究通过深度学习自动测量早产儿视网膜病变(ROP)中异常神经血管组织(ANVTV)的体积,以开发基于OCT的定量生物标志物 首次使用深度学习自动测量ROP中ANVTV的体积,并验证其与疾病阶段的关联 样本量较小,仅来自单一中心,且仅评估了1至3阶段的ROP 开发基于OCT的定量生物标志物,用于ROP的筛查、诊断和监测 早产儿视网膜病变(ROP)患者 数字病理学 早产儿视网膜病变 OCT(光学相干断层扫描) U-Net 图像 33名ROP婴儿,其中6名用于训练,6名用于测试,21名用于临床评估 NA NA NA NA
17980 2025-01-31
Integrating deep learning and machine learning for improved CKD-related cortical bone assessment in HRpQCT images: A pilot study
2025-Mar, Bone reports IF:2.1Q3
研究论文 本研究结合深度学习和机器学习,旨在改进慢性肾病(CKD)相关皮质骨在HRpQCT图像中的评估 创新性地将深度学习和机器学习结合,用于自动分割和分类CKD相关的骨骼异常,超越了传统的DXA和CT测量方法 样本量较小,仅为30名个体,且为概念验证研究,需进一步扩大样本量验证 改进CKD相关皮质骨的自动分割和分类,提升对CKD相关皮质骨变化的敏感性 30名个体(20名非CKD,10名3至5D期CKD)的HRpQCT图像 数字病理学 慢性肾病 HRpQCT 深度学习模型和XGBoost 图像 30名个体(20名非CKD,10名3至5D期CKD),外加42名独立验证个体(18名非CKD,24名5D期CKD) NA NA NA NA
回到顶部