深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202502-202502] [清除筛选条件]
当前共找到 1213 篇文献,本页显示第 441 - 460 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
441 2025-10-07
Multi-institutional development and testing of attention-enhanced deep learning segmentation of thyroid nodules on ultrasound
2025-Feb, International journal of computer assisted radiology and surgery IF:2.3Q2
研究论文 开发并验证了一种基于注意力增强深度学习的甲状腺结节超声自动分割系统 采用带有注意力权重函数的AttU-Net架构,并在多机构数据集上进行独立测试验证 仅使用两个医疗机构的回顾性数据,需要进一步整合到自动分类系统中 开发自动甲状腺结节超声分割算法以支持风险分层系统 甲状腺结节患者 医学影像分析 甲状腺结节 超声成像 深度学习 超声图像 520名患者的1595张甲状腺超声图像 NA AttU-Net Dice相似系数, Hausdorff距离百分比 NA
442 2025-10-07
Diagnosis of lymph node metastasis in oral squamous cell carcinoma by an MRI-based deep learning model
2025-Feb, Oral oncology IF:4.0Q2
研究论文 开发并验证基于MRI影像的三阶段深度学习模型用于口腔鳞状细胞癌淋巴结转移诊断 首次提出结合随机森林分类器的三阶段深度学习模型,能够显著降低隐匿性转移率 回顾性研究设计,需要前瞻性验证 开发深度学习模型用于口腔鳞状细胞癌淋巴结转移诊断 口腔鳞状细胞癌患者 计算机视觉 口腔癌 磁共振成像 深度学习 MRI影像 723名患者的45,664张术前MRI图像,来自10家中国医院 NA 三阶段深度学习模型 AUC NA
443 2025-10-07
Artificial Intelligence and Cancer Health Equity: Bridging the Divide or Widening the Gap
2025-Feb, Current oncology reports IF:4.7Q1
综述 评估人工智能对癌症健康公平性的影响,分析AI是缩小还是扩大癌症结局差异 首次系统评估AI技术在癌症健康公平性领域的双刃剑作用,提出包容性数据集和伦理框架的解决方案 作为综述文章未包含原始数据研究,主要基于现有文献分析 探讨人工智能对癌症健康公平性的影响机制和发展方向 人工智能在癌症诊疗中的应用及其对不同人群的影响 医疗人工智能 癌症 深度学习、预测分析 深度学习模型 医疗数据 NA NA NA NA NA
444 2025-10-07
Inferring multi-slice spatially resolved gene expression from H&E-stained histology images with STMCL
2025-Feb, Methods (San Diego, Calif.)
研究论文 提出一种名为STMCL的多模态对比学习框架,用于从H&E染色组织学图像推断空间基因表达 首次整合组织学图像、基因表达特征和空间位置信息的多模态对比学习框架,能够预测多切片空间基因表达 仅测试了10X Genomics平台生成的四种多切片空间转录组数据集 开发从H&E染色组织学图像预测空间基因表达的低成本方法 空间转录组数据和H&E染色组织学图像 数字病理学 癌症 空间转录组学,H&E染色 深度学习,对比学习 图像,基因表达数据 四种多切片空间转录组数据集 NA STMCL 空间基因表达预测准确性,基因表达模式保持能力 NA
445 2025-10-07
A Novel RAGE Modulator Induces Soluble RAGE to Reduce BACE1 Expression in Alzheimer's Disease
2025-Feb, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 本研究探索抗癌药物6-硫代鸟苷通过调节RAGE降低BACE1表达,改善阿尔茨海默病病理 首次发现抗癌药物6-TG可直接与RAGE相互作用,通过JAK2-STAT1通路调节BACE1表达并提高脑内sRAGE水平 研究主要基于AD小鼠模型,尚未在人类临床试验中验证 探索通过降低BACE1表达来减轻阿尔茨海默病病理的新策略 阿尔茨海默病小鼠模型、β-分泌酶(BACE1)、晚期糖基化终末产物受体(RAGE) 数字病理 阿尔茨海默病 表面等离子共振分析、深度学习靶点识别 深度学习 生物分子相互作用数据、行为学数据 AD小鼠模型 NA NA BACE1表达水平、Aβ积累量、认知功能改善、小胶质细胞吞噬活性 NA
446 2025-10-07
An accelerated deep learning model can accurately identify clinically important humeral and scapular landmarks on plain radiographs obtained before and after anatomic arthroplasty
2025-Feb, International orthopaedics IF:2.0Q2
研究论文 开发了一种加速深度学习模型,用于在肩关节置换术前后的X光片上准确定位肱骨和肩胛骨的关键解剖标志点 仅使用240张标注图像作为基础训练集,通过图像增强技术扩展到2260张训练图像,实现了高效的深度学习模型 研究证据等级为IV级,样本量相对有限,仅包含240张原始X光片 评估深度学习模型在肩关节置换术前后的X光片上识别骨性标志点的准确性 肩关节置换术患者的术前和术后X光片 计算机视觉 骨科疾病 X射线成像 深度学习模型 X光图像 240张原始X光片,通过增强扩展到2260张训练图像,60张测试图像 NA NA 平均偏差(mm), p值 NA
447 2025-10-07
Enhancing meteorological data reliability: An explainable deep learning method for anomaly detection
2025-Feb, Journal of environmental management IF:8.0Q1
研究论文 提出一种基于自编码器、SHAP和贝叶斯优化的可解释深度学习方法,用于气象观测数据的异常检测 结合自编码器、SHAP解释性分析和贝叶斯优化,开发了可解释的异常检测方法,并采用K-sigma阈值自动划分方法适应不同观测站点的数据特征 未明确说明模型在不同气候条件下的泛化能力以及计算效率的具体表现 提高气象观测数据的可靠性,实现及时准确的数据异常检测 气象观测数据 机器学习 NA 深度学习异常检测 自编码器(AE) 多维气象数据集 NA NA 自编码器 NA NA
448 2025-10-07
Effect of magnetic field strength and segmentation variability on the reproducibility and repeatability of radiomic texture features in cardiovascular magnetic resonance parametric mapping
2025-Feb, The international journal of cardiovascular imaging
研究论文 评估心肌放射组学纹理特征对磁场强度差异和分割变异性的鲁棒性 首次系统评估放射组学纹理特征在心血管磁共振参数映射中对扫描仪场强差异和分割变异性的敏感度 样本量较小(仅15名健康志愿者),仅使用西门子扫描仪,结果可能不适用于其他厂商设备 评估放射组学纹理特征在临床实践中的可靠性 健康志愿者的心脏磁共振T1映射图像 医学影像分析 心血管疾病 心血管磁共振成像,放射组学分析 深度学习模型 医学影像 15名健康志愿者的45对CMR T1映射图像(1.5T和3T各15个) NA 蒙特卡洛Dropout 组内相关系数 NA
449 2025-10-07
Unraveling Spatial Heterogeneity in Mass Spectrometry Imaging Data with GraphMSI
2025-Feb, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
研究论文 提出一种基于深度学习的GraphMSI方法,用于增强质谱成像数据的空间异质性分析 首次将代谢谱与空间信息整合到图神经网络中,提供两种可选增强模式(涂鸦交互和知识迁移)来改进分割结果 未明确说明方法在特定组织类型或疾病中的适用性限制 开发一种能够客观分割质谱成像数据中生物组织区域的新方法 质谱成像数据中的代谢异质性区域 计算生物学 NA 质谱成像 图神经网络 质谱成像数据 NA NA GraphMSI 视觉检查,定量评估 降低计算需求,支持更有效的三维MSI分割
450 2025-10-07
A green and efficient method for detecting nicosulfuron residues in field maize using hyperspectral imaging and deep learning
2025-Feb-15, Journal of hazardous materials IF:12.2Q1
研究论文 本研究开发了一种基于高光谱成像和深度学习的绿色高效方法,用于检测田间玉米中烟嘧磺隆除草剂残留 提出了HerbiResNet模型,结合光谱技术与深度学习,显著优于传统回归模型和经典神经网络,并发现了特定光谱波段与除草剂残留及玉米生理变化之间的强相关性 仅针对六种玉米品种和两种除草剂浓度进行研究,样本多样性有限 开发快速准确的烟嘧磺隆除草剂残留检测方法,以支持化学修复和优化喷洒策略 田间种植的玉米叶片,包括抗性和敏感型六种品种 计算机视觉 NA 高光谱成像 CNN 光谱数据 六种玉米品种在两种除草剂浓度下的样本,残留水平分为低、中、高三级 NA HerbiResNet, AlexNet 决定系数(R²), 准确率 NA
451 2025-10-07
Hierarchical Graph Attention Network with Positive and Negative Attentions for Improved Interpretability: ISA-PN
2025-Feb-10, Journal of chemical information and modeling IF:5.6Q1
研究论文 提出一种具有正负注意力机制的分层图注意力网络ISA-PN,用于增强分子结构-性质关系的可解释性 开发了可解释子图注意力网络ISA-PN,通过正负注意力流量化分子子结构对分子性质的贡献 主要在水溶性数据集上评估可解释性,其他性质数据集的验证相对有限 提高深度学习模型在化学和材料科学中的可解释性 分子结构-性质关系 机器学习 NA 深度学习 图注意力网络 分子结构数据 NA NA 分层图注意力网络, ISA-PN, GC-Net 准确率, 可解释性评估 NA
452 2025-10-07
Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states
2025-Feb-08, Nucleic acids research IF:16.6Q1
研究论文 本研究通过深度学习模型分析组蛋白标记与基因表达的关系,揭示了组蛋白标记功能、基因组距离和细胞状态对转录预测的共同影响 在11种细胞类型中系统研究7种组蛋白标记,首次综合考虑细胞状态、组蛋白标记功能和远端调控效应这三个关键因素 模型预测能力受限于所研究的组蛋白标记类型和细胞状态范围 探索组蛋白标记活性与基因表达之间的复杂关系 7种组蛋白标记在11种不同细胞类型中的活性模式 计算生物学 NA 染色质深度学习模型,组蛋白标记扰动分析 CNN, 注意力机制模型 组蛋白标记数据,基因表达数据 11种细胞类型,7种组蛋白标记 NA 卷积神经网络,基于注意力的模型 NA NA
453 2025-10-07
A review on real time implementation of soft computing techniques in thermal power plant
2025-Feb, Network (Bristol, England)
综述 本文对2019-2023年间软计算技术在热电厂实时应用的研究进行了全面综述 首次系统梳理了AI-ML和DL在热电厂应用的年度分布和研究维度,识别了研究空白和未来方向 仅涵盖2019-2023年的文献,可能遗漏早期重要研究;聚焦热电厂特定领域,结论可能不适用于其他能源系统 评估软计算技术在提升热电厂生产效率方面的应用效果 热电厂生产系统和相关优化技术 机器学习 NA 软计算技术,AI-ML,深度学习 NA NA NA NA NA NA NA
454 2025-10-07
Assessing the effects of 5-HT2A and 5-HT5A receptor antagonists on DOI-induced head-twitch response in male rats using marker-less deep learning algorithms
2025-Feb, Pharmacological reports : PR IF:3.6Q2
研究论文 本研究使用无标记深度学习算法评估5-HT2A和5-HT5A受体拮抗剂对DOI诱导的大鼠头部抽搐反应的影响 首次采用无标记深度学习工作流程(DeepLabCut+SimBA)自动检测啮齿类动物的头部抽搐反应,无需手术植入标记物 研究仅使用雄性大鼠,未涉及雌性动物;方法验证主要基于与人工观察的相关性 评估无标记深度学习算法在检测5-HT受体介导的头部抽搐反应中的可行性和准确性 雄性大鼠的头部抽搐行为 计算机视觉 NA 高速视频记录,行为分析 深度学习,神经网络 视频 使用雄性大鼠进行实验,具体数量未明确说明 DeepLabCut, SimBA DeepLabCut神经网络 与人工观察的显著相关性 NA
455 2025-10-07
Rapid in vivo EPID image prediction using a combination of analytically calculated attenuation and AI predicted scatter
2025-Feb, Medical physics IF:3.2Q1
研究论文 开发结合分析计算衰减和AI预测散射的深度学习方法,用于快速预测体内EPID图像 将体内EPID图像分离为主光子衰减和散射分量,分别使用分析计算和CNN预测,提供比蒙特卡洛算法更快的预测速度 部分图像通过率较低是由于CBCT伪影和患者在CBCT与治疗期间发生的移动 测试使用患者数据创建深度学习模型预测IMRT治疗中体内EPID图像的可行性和可靠性 93名患者的193个IMRT野/图像,以及额外的人体模型数据 医学影像分析 放射治疗相关疾病 电子门户成像设备(EPID),锥形束CT(CBCT),IMRT治疗 CNN 3通道图像(包含非透射EPID图像和CBCT射线追踪投影) 93名患者的193个IMRT野/图像,训练:验证:测试=133:20:40,额外75个人体模型图像 NA 卷积神经网络 gamma通过率 标准GPU
456 2025-10-07
Deep learning-based classifier for carcinoma of unknown primary using methylation quantitative trait loci
2025-Feb-01, Journal of neuropathology and experimental neurology IF:3.2Q2
研究论文 开发基于深度学习的DNA甲基化分类器,用于识别原发灶不明癌的原发器官 首次利用器官特异性甲基化数量性状位点(mQTLs)开发深度学习分类器,可在较少样本量下实现高精度分类 回顾性研究,仅针对特定器官(乳腺、肺、卵巢/妇科、结肠、肾、睾丸)开发分类器 开发高精度的原发灶不明癌器官来源分类器以辅助临床诊断和治疗决策 759例福尔马林固定石蜡包埋的癌组织样本 数字病理 原发灶不明癌 DNA甲基化芯片分析(Illumina EPIC array) 深度学习分类器 甲基化数据 759例癌组织样本 NA NA 准确率,F1分数 NA
457 2025-10-07
Assessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet++ based deep learning model
2025-Feb, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究评估了基于kV iCBCT和UNet++深度学习模型的离线自适应放疗在肺癌治疗中的临床可行性 首次系统验证了基于UNet++深度学习模型将kV iCBCT转换为自适应CT的离线自适应放疗方案在肺癌治疗中的临床可行性 样本量相对有限(102例患者),且为单中心研究 开发并验证一种具有高临床可行性的肺癌离线自适应放疗方案 肺癌患者 医学影像分析 肺癌 kV迭代锥形束CT(iCBCT),深度学习图像转换 深度学习 医学影像(CT扫描) 102例肺癌患者(70例训练,15例测试,17例临床验证) NA UNet++ 平均绝对误差(MAE),峰值信噪比(PSNR),结构相似性(SSIM),亨氏单位(HU),Gamma通过率,TLD测量偏差 NA
458 2025-10-07
Regional PM2.5 prediction with hybrid directed graph neural networks and Spatio-temporal fusion of meteorological factors
2025-Feb-01, Environmental pollution (Barking, Essex : 1987)
研究论文 提出一种基于混合有向图神经网络的PM2.5区域预测方法,结合气象因素时空融合 利用领域特征量化相邻城市影响构建有向图,集成图神经网络和长短期记忆网络进行时空编码 未明确说明模型在其他地理区域的泛化能力 优化空气质量预测和管理,提高PM2.5浓度预测精度 华北平原城市区域的PM2.5浓度数据 机器学习 NA 时空数据融合 GNN, LSTM 时空序列数据 NA 深度学习框架 混合有向图神经网络 平均绝对误差(MAE) NA
459 2025-10-07
High-content imaging and deep learning-driven detection of infectious bacteria in wounds
2025-Feb, Bioprocess and biosystems engineering IF:3.5Q2
研究论文 开发基于高内涵成像和深度学习的框架,用于快速检测和分类伤口感染细菌 利用预训练ResNet50模型分析细菌菌落生长图像,将检测时间从传统方法的24小时以上缩短至8小时 仅针对四种特定细菌进行验证,在混合样本中的分类精度略低于单一菌种 开发快速准确的伤口感染细菌检测方法以满足临床急需 鲍曼不动杆菌、大肠杆菌、铜绿假单胞菌和金黄色葡萄球菌四种伤口常见细菌 计算机视觉 伤口感染 高内涵成像 CNN 图像 体外样本和小鼠伤口样本 NA ResNet50 检测率,准确率,精确率 NA
460 2025-10-07
Low dose threshold for measuring cardiac functional metrics using four-dimensional CT with deep learning
2025-Feb, Journal of applied clinical medical physics IF:2.0Q3
研究论文 本研究探索使用深度学习分割技术在四维CT中降低辐射剂量的可能性 开发了噪声鲁棒深度学习模型,能够在显著降低辐射剂量(最高达76%)的情况下保持心脏功能指标的测量准确性 研究主要关注全局功能指标,对局部功能指标的分析可能有限 研究在四维CT心脏成像中降低辐射剂量的可行性 心脏左心室心肌和血池 医学影像分析 心血管疾病 四维CT成像 CNN CT影像 250个心脏CT容积数据集,重建为五个不同剂量水平 NA 3D Residual U-Net 射血分数, 整体纵向应变, 圆周应变, 平均壁厚度 NA
回到顶部