本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41 | 2024-11-21 |
Integrating deep learning and data fusion for enhanced oranges soluble solids content prediction using machine vision and Vis/NIR spectroscopy
2025-Feb-01, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2024.141488
PMID:39396473
|
研究论文 | 本文开发了一种具有颜色校正能力的深度学习模型,用于基于多源数据融合预测橙子的可溶性固形物含量 | 提出了结合机器视觉和可见/近红外光谱的多源数据融合方法,并构建了基于颜色校正的一维卷积神经网络模型 | NA | 提高水果成分预测的准确性 | 橙子的可溶性固形物含量 | 机器学习 | NA | 可见/近红外光谱 | 一维卷积神经网络 | 图像和光谱数据 | NA |