本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 601 | 2025-03-16 |
Breast Cancer Detection via Multi-Tiered Self-Contrastive Learning in Microwave Radiometric Imaging
2025-Feb-25, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15050549
PMID:40075796
|
研究论文 | 本文提出了一种名为J-MWR的分层自对比模型,用于分析微波辐射成像(MWR)数据,以提高乳腺癌的早期和准确检测 | J-MWR模型通过比较个体内部两个乳房相应子区域的温度变化,而非跨样本比较,来检测可能指示潜在问题的细微热异常 | NA | 提高乳腺癌的早期和准确检测 | 乳腺癌患者 | 数字病理学 | 乳腺癌 | 微波辐射成像(MWR) | 分层自对比模型(J-MWR) | 温度数据 | 4932名患者 | NA | NA | NA | NA |
| 602 | 2025-03-16 |
An Integrated Deep Learning Model with EfficientNet and ResNet for Accurate Multi-Class Skin Disease Classification
2025-Feb-25, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15050551
PMID:40075797
|
研究论文 | 本文提出了一种结合EfficientNet和ResNet的深度学习模型,用于准确的多类皮肤疾病分类 | 创新点在于融合了三种卷积神经网络(EfficientNet-B0、EfficientNet-B2和ResNet50),通过独立分支操作提取详细特征,并通过融合机制进行特征传递和降维 | 未提及具体局限性 | 研究目标是创建一个融合级深度学习模型,以提高皮肤疾病分类的稳定性和性能 | 研究对象为皮肤疾病图像数据,包括白血病、早期皮肤癌、良性肿瘤和其他皮肤疾病 | 计算机视觉 | 皮肤癌 | 深度学习 | CNN(EfficientNet-B0、EfficientNet-B2、ResNet50) | 图像 | 27,153张图像,来自Kaggle皮肤疾病图像数据集,分为训练集(80%)、验证集(10%)和测试集(10%) | NA | NA | NA | NA |
| 603 | 2025-03-16 |
Detection of Gallbladder Disease Types Using a Feature Engineering-Based Developed CBIR System
2025-Feb-25, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15050552
PMID:40075799
|
研究论文 | 本文介绍了一种基于特征工程开发的内容基于图像检索(CBIR)系统,用于早期检测和诊断胆囊疾病 | 提出的CBIR模型结合了三种不同预训练架构的特征提取,并在六种不同模型中取得了成功的结果,AP值达到0.94 | 研究未提及样本的具体数量及多样性,可能影响模型的泛化能力 | 开发一种能够早期检测和诊断胆囊疾病的AI系统 | 胆囊疾病 | 计算机视觉 | 胆囊疾病 | 内容基于图像检索(CBIR) | 卷积神经网络(CNN) | 图像 | NA | NA | NA | NA | NA |
| 604 | 2025-03-16 |
SADASNet: A Selective and Adaptive Deep Architecture Search Network with Hyperparameter Optimization for Robust Skin Cancer Classification
2025-Feb-24, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15050541
PMID:40075789
|
研究论文 | 本文提出了一种基于元启发式优化的深度学习方法SADASNet,用于多类皮肤癌分类,旨在提高诊断准确性并降低计算复杂度 | SADASNet方法结合了粒子群优化技术,创新性地解决了超参数优化问题,并应用了数据增强技术以克服类别不平衡问题 | NA | 提高皮肤癌分类的准确性并降低计算复杂度 | 皮肤癌 | 计算机视觉 | 皮肤癌 | 粒子群优化(PSO) | SADASNet | 图像 | HAM10000数据集 | NA | NA | NA | NA |
| 605 | 2025-03-16 |
A Multi-Agent and Attention-Aware Enhanced CNN-BiLSTM Model for Human Activity Recognition for Enhanced Disability Assistance
2025-Feb-22, Diagnostics (Basel, Switzerland)
DOI:10.3390/diagnostics15050537
PMID:40075785
|
研究论文 | 本文提出了一种新颖的三阶段特征集成策略,结合深度学习和机器学习,用于准确自动分类人类活动识别,以增强残疾辅助技术 | 通过增强最先进的卷积神经网络(CNN)和双向长短期记忆(BiLSTM)模型,结合选择性机器学习分类器和注意力机制,开发了一种独特的活动检测方法 | NA | 增强残疾辅助技术,包括跌倒检测、康复进度跟踪和个性化运动模式分析 | 人类活动识别 | 机器学习 | 残疾 | 深度学习(DL)和机器学习(ML) | CNN, BiLSTM, Attention-CNN-BiLSTM | 活动数据 | 公开可用的数据集(UCI-HAR数据集和WISDM) | NA | NA | NA | NA |
| 606 | 2025-03-15 |
A variational deep-learning approach to modeling memory T cell dynamics
2025-Feb-25, bioRxiv : the preprint server for biology
DOI:10.1101/2024.07.08.602409
PMID:40060443
|
研究论文 | 本文提出了一种结合深度学习和随机变分推理的方法,用于建模小鼠流感病毒感染后肺内记忆T细胞的动态变化 | 该方法能够同时推断动态模型参数和群体结构,直接基于单细胞流式细胞术数据进行训练,而非预定义细胞群的动力学 | 研究仅限于小鼠模型,未涉及人类或其他生物系统的验证 | 研究旨在解决高维数据与可解释数学模型之间的挑战,特别是在免疫反应中的细胞动态变化 | 小鼠流感病毒感染后的肺内记忆CD4和CD8 T细胞 | 机器学习 | 流感 | 单细胞流式细胞术 | 深度学习与随机变分推理 | 单细胞数据 | NA | NA | NA | NA | NA |
| 607 | 2025-03-15 |
Learning maximally spanning representations improves protein function annotation
2025-Feb-17, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.13.638156
PMID:40027840
|
研究论文 | 本文提出了一种名为MSRep的新型深度学习框架,旨在解决蛋白质功能注释中的不平衡问题,并提高注释准确性 | MSRep框架通过优化受神经崩溃(NC)启发的损失函数,确保少数功能在嵌入空间中与多数功能同等表示,从而提高了预测准确性和泛化能力 | 虽然MSRep在多个蛋白质功能注释任务中表现出色,但其在未表征蛋白质上的应用仍需进一步验证 | 提高蛋白质功能注释的准确性,特别是对于研究不足的功能类别 | 蛋白质功能注释 | 计算生物学 | NA | 深度学习 | 预训练蛋白质语言模型 | 蛋白质序列数据 | NA | NA | NA | NA | NA |
| 608 | 2025-03-14 |
Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives
2025-Feb-27, Journal of medicinal chemistry
IF:6.8Q1
DOI:10.1021/acs.jmedchem.4c01257
PMID:39916476
|
评论 | 本文探讨了人工智能在天然产物药物发现中的当前应用及未来前景 | 文章强调了人工智能,特别是机器学习和深度学习,在加速药物发现过程中的创新应用,包括生成式AI用于数据合成 | 文章指出了人工智能在天然产物药物发现中的局限性,并探讨了未来的研究方向 | 研究目的是探讨人工智能如何加速天然产物药物发现,并分析其在这一领域的应用前景 | 研究对象是天然产物及其在药物发现中的应用 | 机器学习 | NA | 机器学习(ML)、深度学习(DL) | NA | 生物数据 | NA | NA | NA | NA | NA |
| 609 | 2025-03-14 |
Regularization by Neural Style Transfer for MRI Field-Transfer Reconstruction with Limited Data
2025-Feb-19, ArXiv
PMID:40034133
|
研究论文 | 本文提出了一种新的MRI重建框架RNST,通过神经风格迁移(NST)引擎与去噪器结合,实现在数据有限情况下的磁场转移重建 | RNST框架结合了神经风格迁移和去噪技术,能够在不需要配对训练数据的情况下,从低场输入生成高质量图像,解决了数据有限环境下的重建问题 | 尽管RNST在风格和内容图像不完全对齐时仍保持鲁棒性,但在临床环境中,精确的参考匹配不可用时,其适用性可能受到限制 | 研究目的是开发一种在数据有限情况下进行MRI磁场转移重建的新方法 | 研究对象是MRI图像,特别是低场输入下的图像重建 | 计算机视觉 | NA | 神经风格迁移(NST) | NA | 图像 | NA | NA | NA | NA | NA |
| 610 | 2025-03-14 |
Binary Classification of Laryngeal Images Utilising ResNet-50 CNN Architecture
2025-Feb, Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India
DOI:10.1007/s12070-024-05202-9
PMID:40070749
|
研究论文 | 本研究提出了一种利用ResNet-50 CNN架构对喉部图像进行二分类的新方法,旨在通过分析内窥镜图像来早期检测喉癌 | 使用ResNet-50 CNN架构对喉部图像进行二分类,结合深度学习和图像处理技术,提高了喉癌早期检测的准确性 | 由于数据稀缺,研究将数据分为癌症和非癌症两类,未能涵盖所有九种形态类别 | 早期检测和分类喉癌 | 喉部内窥镜图像 | 计算机视觉 | 喉癌 | 深度学习,图像处理 | ResNet-50 CNN | 图像 | 1978张内窥镜图像,来自960名患者 | NA | NA | NA | NA |
| 611 | 2025-03-13 |
Unified resilience model using deep learning for assessing power system performance
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42802
PMID:40066024
|
研究论文 | 本文介绍了一种使用深度学习的统一弹性模型(URM),以提高电力系统的性能 | 提出了一种结合深度学习的统一弹性模型,用于分析影响电池和储能设备弹性的环境因素,并通过已知的低弹性损耗数据进行训练,以增强各种强化因素 | NA | 提高电力系统的性能,特别是关注天气因素对系统弹性的影响 | 电池和储能设备的弹性 | 机器学习 | NA | 深度学习 | 深度学习模型 | 环境因素数据、低弹性损耗数据 | NA | NA | NA | NA | NA |
| 612 | 2025-03-13 |
Rewiring protein sequence and structure generative models to enhance protein stability prediction
2025-Feb-18, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.13.638154
PMID:40027759
|
研究论文 | 本文介绍了一种名为SPURS的新型深度学习框架,通过整合两种通用蛋白质生成模型(ESM和ProteinMPNN),提升了蛋白质稳定性预测的准确性 | SPURS通过轻量级神经网络模块将ProteinMPNN学习到的结构表示重新连接到ESM的注意力层,从而增强了ESM的序列表示学习能力,实现了从序列和结构数据中利用进化模式进行稳定性预测 | 尽管SPURS在多个基准数据集上表现出色,但其在蛋白质稳定性预测中的潜力仍需进一步探索,特别是在更广泛的蛋白质功能预测方面 | 提升蛋白质稳定性预测的准确性,以更好地理解人类疾病并设计用于临床和工业应用的有用蛋白质 | 蛋白质 | 机器学习 | NA | 深度学习 | ESM, ProteinMPNN | 序列数据, 结构数据 | 基于最近发布的大规模热稳定性数据集进行训练和评估 | NA | NA | NA | NA |
| 613 | 2025-03-12 |
Artificial Intelligence in Myopic Maculopathy: A Comprehensive Review of Identification, Classification, and Monitoring Using Diverse Imaging Modalities
2025-Feb, Cureus
DOI:10.7759/cureus.78685
PMID:40062093
|
综述 | 本文综述了人工智能(AI)在近视性黄斑病变识别、分类和监测中的应用,主要使用传统成像技术如眼底摄影和光学相干断层扫描(OCT) | 本文综合分析了2018年至2024年间发表的13项研究,探讨了机器学习和深度学习算法在高度近视病例诊断、分类和随访中的角色,揭示了AI模型在疾病诊断中的支持作用 | 大多数研究集中在中国,且主要关注近视性黄斑变性和高度近视患者,可能限制了结果的普遍性 | 探讨AI工具在近视性黄斑病变检测中的有效性和实用性 | 近视性黄斑病变患者 | 数字病理学 | 近视性黄斑病变 | 眼底摄影, 光学相干断层扫描(OCT) | ResNet-18, ResNet-50, ResNet-101, DeepLabv3+, DarkNet-19, Efficient Net (B0/B7), VOLO-D2, Efficient Former, ALFA-Mix+, XGBoost | 图像 | 13项研究,主要来自中国 | NA | NA | NA | NA |
| 614 | 2025-10-07 |
gRNAde: Geometric Deep Learning for 3D RNA inverse design
2025-Feb-25, ArXiv
PMID:38827456
|
研究论文 | 介绍了一种基于几何深度学习的3D RNA逆向设计方法gRNAde | 首次将几何深度学习应用于3D RNA逆向设计,考虑结构构象多样性而非单一二级结构 | NA | 开发能够考虑3D结构和动力学的RNA序列设计方法 | RNA分子 | 计算生物学 | NA | 几何深度学习 | 图神经网络 | 3D结构数据 | 14个PDB RNA结构+10个结构化RNA骨架 | PyTorch Geometric | 多状态图神经网络,自回归解码器 | 天然序列恢复率,成功率 | NA |
| 615 | 2025-10-07 |
Long-Term Carotid Plaque Progression and the Role of Intraplaque Hemorrhage: A Deep Learning-Based Analysis of Longitudinal Vessel Wall Imaging
2025-Feb-19, medRxiv : the preprint server for health sciences
DOI:10.1101/2024.12.09.24318661
PMID:39711698
|
研究论文 | 本研究利用深度学习分割技术分析纵向血管壁成像,评估斑块内出血对颈动脉斑块长期进展的影响 | 首次使用深度学习分割管道在长期纵向血管壁成像中量化斑块内出血体积及其对斑块负荷进展的动态影响 | 样本量较小(28名无症状受试者),研究人群仅限于无症状颈动脉粥样硬化患者 | 评估斑块内出血对颈动脉斑块负荷长期进展的影响 | 28名无症状颈动脉粥样硬化受试者的50条动脉 | 数字病理学 | 心血管疾病 | 多对比磁共振血管壁成像 | 深度学习分割模型 | 磁共振图像 | 28名受试者,50条动脉,平均4.7次扫描/人,随访5.8年 | NA | NA | 相关系数,p值 | NA |
| 616 | 2025-10-07 |
Global Deep Forecasting with Patient-Specific Pharmacokinetics
2025-Feb-12, ArXiv
PMID:37965077
|
研究论文 | 提出一种结合全局-局部架构和药代动力学编码器的深度学习方法,用于患者特异性血糖预测 | 开发了新型混合全局-局部架构和患者特异性药代动力学编码器,能够将个体患者的药物治疗效果信息整合到深度学习模型中 | NA | 解决因可变药物管理和个体药代动力学特性带来的医疗时间序列数据预测挑战 | 患者血糖水平时间序列数据 | 机器学习 | 糖尿病 | 深度学习 | 混合全局-局部模型 | 时间序列数据 | 模拟数据和真实世界数据 | NA | 混合全局-局部架构 | 预测准确率 | NA |
| 617 | 2025-10-07 |
A Hardware Accelerator for Real-Time Processing Platforms Used in Synthetic Aperture Radar Target Detection Tasks
2025-Feb-07, Micromachines
IF:3.0Q2
DOI:10.3390/mi16020193
PMID:40047666
|
研究论文 | 本文设计了一种用于合成孔径雷达目标检测任务的低功耗硬件加速器 | 提出适用于多维卷积并行计算的处理引擎和独特的存储器排列设计,充分利用FPGA计算资源 | 仅基于Virtex 7 690t芯片进行验证,未在其他硬件平台上测试 | 解决机载或星载实时处理平台的功耗问题,实现实时SAR图像目标检测 | 合成孔径雷达图像中的目标检测 | 计算机视觉 | NA | 合成孔径雷达成像 | CNN | SAR图像 | NA | Yolov5s | Yolov5s | 处理速度(52.19张/秒),功耗(7瓦) | Virtex 7 690t FPGA芯片 |
| 618 | 2025-03-06 |
XLTLDisNet: A novel and lightweight approach to identify tomato leaf diseases with transparency
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42575
PMID:40040968
|
研究论文 | 本文提出了一种名为XLTLDisNet的新型轻量级深度学习模型,用于识别番茄叶部疾病,并增强了模型的可解释性 | 提出了一种新型轻量级深度学习模型XLTLDisNet,并集成了可解释性AI技术(如GRAD-CAM和LIME)以增强模型的可解释性 | 未提及具体局限性 | 通过早期检测番茄叶部疾病,减少农业损失并最大化产量 | 番茄叶部疾病 | 计算机视觉 | NA | 深度学习 | XLTLDisNet | 图像 | PlantVillage番茄叶部疾病数据集,包含十类番茄叶部疾病(包括健康图像) | NA | NA | NA | NA |
| 619 | 2025-03-06 |
A hybrid Bayesian network-based deep learning approach combining climatic and reliability factors to forecast electric vehicle charging capacity
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42483
PMID:40040994
|
研究论文 | 本文提出了一种结合气候和可靠性因素的混合贝叶斯网络深度学习模型,用于预测电动汽车充电容量 | 创新点在于将排队网络和贝叶斯网络模型与深度学习技术结合,以提高预测精度和基础设施可靠性 | 未明确提及具体局限性 | 开发一个综合系统,考虑气象条件和充电桩故障率等多种影响因素,以优化电动汽车基础设施 | 电动汽车充电需求 | 机器学习 | NA | 深度学习 | 混合贝叶斯网络深度学习(HBNDL) | 交易数据和气候分析数据 | 未明确提及具体样本数量 | NA | NA | NA | NA |
| 620 | 2025-03-06 |
Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization
2025-Feb, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2023.3330864
PMID:37976189
|
研究论文 | 本文提出了一种结合信息理论学习和因果表示学习的双生成对抗网络框架,旨在增强现代机器学习中的鲁棒性分布外泛化能力 | 创新点在于将信息理论学习和因果表示学习无缝集成到双生成对抗网络架构中,通过因果图和信息理论增强特征表示,并开发了一种双对抗训练机制 | 未明确提及具体限制 | 增强现代机器学习中的鲁棒性分布外泛化能力 | 现代智能制造和智能交通系统中的机器学习模型 | 机器学习 | NA | 信息理论学习(ITL)和因果表示学习(CRL) | 双生成对抗网络(Dual-GAN) | NA | 基于一个开源数据集进行实验和评估 | NA | NA | NA | NA |