本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
641 | 2025-04-24 |
The Future of Artificial Intelligence Using Images and Clinical Assessment for Difficult Airway Management
2025-Feb-01, Anesthesia and analgesia
IF:4.6Q1
DOI:10.1213/ANE.0000000000006969
PMID:38557728
|
review | 本文综述了人工智能(AI)特别是深度学习在利用影像和临床评估进行困难气道管理中的应用及其优势 | 探讨了AI模型如何影响临床实践,并讨论了使用机器学习进行困难喉镜预测的未来方法及智能插管设备的前景 | NA | 探索AI在困难气道管理中的应用及其对临床实践的影响 | 困难气道管理 | machine learning | NA | deep learning, machine-learning | deep-learning models | imaging data | NA |
642 | 2025-04-23 |
Discovering effect of intuitionistic fuzzy transformation in multi-layer perceptron for heart disease prediction: a study
2025-Feb, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2023.2284095
PMID:38013456
|
research paper | 该研究探讨了直觉模糊变换在多感知层神经网络(MLP)中对心脏病预测的影响 | 论文的创新点在于从特征转换到深度学习的整个过程,特别是使用直觉模糊集(IFS)考虑成员度和非成员度两种不确定性 | NA | 减少心脏病的风险,通过先进的深度学习算法帮助医生早期诊断 | 心脏病预测 | machine learning | cardiovascular disease | 直觉模糊变换和模糊参数转换 | MLP | 临床参数 | NA |
643 | 2025-04-23 |
Enhancing drug discovery in schizophrenia: a deep learning approach for accurate drug-target interaction prediction - DrugSchizoNet
2025-Feb, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2023.2282951
PMID:38375638
|
研究论文 | 本文提出了一种基于深度学习的模型DrugSchizoNet,用于精神分裂症药物靶点相互作用的准确预测 | 采用LSTM层捕捉药物相互作用的序列特性,并结合OB-MOA优化进行超参数调优,显著提高了预测准确率至98.70% | 模型性能依赖于DrugBank和repoDB数据库的数据质量,可能受限于数据覆盖范围 | 提升精神分裂症药物发现的效率和准确性 | 药物靶点相互作用数据 | 机器学习 | 精神分裂症 | 深度学习 | LSTM | 药物相关数据 | 来自DrugBank和repoDB数据库的药物数据 |
644 | 2025-04-23 |
DeepCompoundNet: enhancing compound-protein interaction prediction with multimodal convolutional neural networks
2025-Feb, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2023.2291829
PMID:38084744
|
研究论文 | 本文提出了一种名为DeepCompoundNet的多模态卷积神经网络模型,用于增强化合物-蛋白质相互作用的预测 | 整合了蛋白质特征、药物属性和多种相互作用数据,超越了仅依赖氨基酸序列同源性和化学结构相似性的现有方法 | 未提及具体的数据集规模限制或模型泛化能力的详细评估 | 提升化合物-蛋白质相互作用的预测准确率 | 化合物与蛋白质的相互作用 | 机器学习 | NA | 多模态卷积神经网络 | CNN | 分子结构数据、相互作用网络数据 | 未明确提及具体样本数量 |
645 | 2025-04-23 |
A fine-tuning deep residual convolutional neural network for emotion recognition based on frequency-channel matrices representation of one-dimensional electroencephalography
2025-Feb, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2023.2286918
PMID:38017703
|
研究论文 | 本研究提出了一种基于一维脑电图(EEG)信号的频率-通道矩阵(FCM)表示的深度残差卷积神经网络模型,用于情感识别(ER) | 结合预训练的深度残差卷积神经网络和迁移学习技术,利用二维数据的FCM表示来自动学习多通道EEG数据的潜在内在特征 | 未提及具体的数据集局限性或模型泛化能力的讨论 | 提高基于EEG信号的情感识别系统的自动化和准确性 | 多通道EEG数据 | 机器学习 | NA | Welch功率谱密度估计,t-SNE策略 | 深度残差卷积神经网络(ResNet) | 一维EEG信号 | DEAP数据集上的5折交叉验证 |
646 | 2025-04-23 |
Neurosurgery inpatient outcome prediction for discharge planning with deep learning and transfer learning
2025-Feb, British journal of neurosurgery
IF:1.0Q3
DOI:10.1080/02688697.2022.2151565
PMID:36458628
|
research paper | 本研究探讨了深度学习和迁移学习在预测神经外科住院患者出院时间和出院目的地等住院结果中的应用 | 使用迁移学习和人工神经网络对自由文本医疗数据进行预测,提高了预测准确性 | 研究仅基于15个月的数据,样本量相对有限 | 预测神经外科住院患者的住院结果以辅助出院规划 | 神经外科住院患者 | machine learning | neurosurgery | deep learning, transfer learning | artificial neural network | text | 1341例住院患者 |
647 | 2025-04-20 |
Training deep learning models on personalized genomic sequences improves variant effect prediction
2025-Feb-15, bioRxiv : the preprint server for biology
DOI:10.1101/2024.10.15.618510
PMID:39463940
|
research paper | 该研究展示了在匹配的个人基因组上训练深度学习模型可以提高其在变异效应预测中的性能 | 通过使用匹配的个人基因组数据进行训练,提高了序列到功能模型在变异效应预测中的性能 | 未提及具体的模型性能提升幅度或与其他方法的比较 | 提高序列到功能模型在变异效应预测中的性能 | 个人基因组数据 | machine learning | NA | deep learning | sequence-to-function models | genomic sequences | NA |
648 | 2025-04-20 |
Leveraging deep learning to detect stance in Spanish tweets on COVID-19 vaccination
2025-Feb, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooaf007
PMID:40008184
|
研究论文 | 本研究利用深度学习技术检测西班牙语推文中关于COVID-19疫苗接种的立场 | 开发了针对西班牙语社交媒体帖子的立场检测模型,填补了非英语语料研究的空白 | 语言特定嵌入模型未超越多语言嵌入或TF-IDF特征,可能由于BERT或RoBERTa嵌入不熟悉Twitter常用俚语和疫情期间的特殊语境 | 开发西班牙语社交媒体帖子的立场检测模型,以支持公共卫生应用 | 关于COVID-19疫苗接种的西班牙语推文 | 自然语言处理 | COVID-19 | 深度学习 | BERT-Multi+BiLSTM, BETO+BiLSTM, RoBERTa BNE-LSTM, TF-IDF+SVM | 文本 | 6170条推文(2020年3月1日至2022年1月4日期间发布) |
649 | 2025-04-18 |
Spatially resolved transcriptomics and graph-based deep learning improve accuracy of routine CNS tumor diagnostics
2025-02, Nature cancer
IF:23.5Q1
DOI:10.1038/s43018-024-00904-z
PMID:39880907
|
research paper | 该研究开发了一种名为NePSTA的方法,结合空间转录组学和图神经网络,用于中枢神经系统肿瘤的自动组织学和分子评估 | NePSTA方法首次将空间转录组学与图神经网络结合,用于中枢神经系统肿瘤的诊断,能够在单一切片上实现高精度的组织学和分子评估 | 该方法虽然降低了DNA质量和数量的要求,但仍需进一步验证其在更广泛样本中的适用性 | 提高中枢神经系统肿瘤的诊断准确性和效率 | 中枢神经系统肿瘤患者和健康捐赠者的组织样本 | digital pathology | CNS tumor | spatial transcriptomics, NGS, DNA methylation profiling | graph neural networks | spatial transcriptomic data, histological images | 130名参与者的样本,包括CNS恶性肿瘤患者和健康捐赠者,来自四个医疗中心 |
650 | 2025-04-17 |
Depression diagnosis: EEG-based cognitive biomarkers and machine learning
2025-02-26, Behavioural brain research
IF:2.6Q3
DOI:10.1016/j.bbr.2024.115325
PMID:39515528
|
综述 | 本文综述了抑郁症诊断中的EEG认知生物标志物及机器学习应用 | 探讨了EEG生物标志物在抑郁症诊断中的潜力,并整合了机器学习和深度学习模型以提高诊断准确性 | 未提及具体实验数据或样本量,可能缺乏实证支持 | 研究抑郁症诊断的新方法及其神经生理学基础 | 抑郁症患者及其EEG数据 | 机器学习 | 抑郁症 | EEG数据分析 | 机器学习和深度学习模型 | EEG数据 | NA |
651 | 2025-04-16 |
Schizophrenia recognition based on three-dimensional adaptive graph convolutional neural network
2025-02-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84497-8
PMID:39900572
|
research paper | 提出了一种基于三维自适应图卷积神经网络的精神分裂症分类模型,利用EEG信号的三维空间特性和动态学习节点间交互 | 首次将三维自适应图卷积神经网络应用于精神分裂症识别,动态学习EEG信号的空间、特征和频带维度交互 | 未提及模型在其他精神疾病或更大规模数据集上的泛化能力 | 提高精神分裂症的早期诊断和识别准确率 | 首次发作精神分裂症患者的EEG数据 | digital pathology | 精神分裂症 | EEG信号分析 | 3D-AGCN (GAT + GCN) | EEG信号 | 未明确说明样本数量,使用不同分段长度和频带的EEG数据 |
652 | 2025-04-15 |
A Deep Learning Approach to Multi-Fiber Parameter Estimation and Uncertainty Quantification in Diffusion MRI
2025-Feb-28, ArXiv
PMID:40061116
|
research paper | 本文提出了一种基于深度学习的多纤维参数估计和不确定性量化方法,用于扩散MRI中的脑微结构研究 | 引入了一种新颖的序列方法,将多纤维参数推断任务分解为一系列可管理的子问题,并使用针对特定问题和对称性设计的深度神经网络进行求解 | 未明确提及具体局限性 | 开发可靠且计算高效的扩散MRI生物物理模型参数推断方法 | 脑白质纤维微结构 | medical imaging | NA | diffusion MRI (dMRI) | deep neural networks | MRI imaging data | Human Connectome Project (HCP) 数据 |
653 | 2025-04-13 |
Comparison of 7 artificial intelligence models in predicting venous thromboembolism in COVID-19 patients
2025-Feb, Research and practice in thrombosis and haemostasis
IF:3.4Q1
DOI:10.1016/j.rpth.2025.102711
PMID:40212774
|
研究论文 | 比较7种人工智能模型在预测COVID-19患者静脉血栓栓塞中的表现 | 比较了7种不同AI模型在预测VTE中的表现,并确定了SVC模型为最优 | 研究仅基于单一多中心观察性研究的数据,可能无法推广到其他人群 | 比较不同AI模型在预测COVID-19患者静脉血栓栓塞中的性能 | COVID-19患者 | 机器学习 | COVID-19 | 递归特征消除、K折交叉验证、超参数调优 | 多层感知器分类器、人工神经网络、XGBoost、支持向量分类器、随机梯度下降分类器、随机森林分类器、逻辑回归分类器 | 临床数据 | 8027名患者中的2649名用于测试 |
654 | 2025-04-12 |
Spatial single-cell proteomics landscape decodes the tumor microenvironmental ecosystem of intrahepatic cholangiocarcinoma
2025-Feb-25, Hepatology (Baltimore, Md.)
DOI:10.1097/HEP.0000000000001283
PMID:39999448
|
研究论文 | 本研究利用人工智能辅助的空间多组学模式,生成了肝内胆管癌(iCCA)的综合空间图谱,并识别了与预后和免疫治疗相关的空间特征 | 首次揭示了iCCA的空间肿瘤微环境(TME)特征,包括细胞沉积模式、细胞群落和细胞间通讯,并开发了一个深度学习系统来预测患者预后 | 样本量在某些组学数据中相对较小(如空间转录组学n=4),可能影响结果的广泛适用性 | 解析iCCA的空间TME特征,为精准患者分类和个性化治疗策略开发提供基础 | 肝内胆管癌(iCCA)患者的肿瘤微环境 | 数字病理学 | 肝内胆管癌 | 成像质谱流式细胞术、空间蛋白质组学、空间转录组学、多重免疫荧光、单细胞RNA测序(scRNA-seq)、批量RNA测序、批量蛋白质组学 | 深度学习 | 多组学数据(蛋白质组、转录组、影像数据) | 总计超过106万个细胞,包括155例内部成像质谱流式细胞术样本、155例内部空间蛋白质组学样本、4例内部空间转录组学样本、20例内部多重免疫荧光样本、9例内部和34例公共scRNA-seq样本、244例公共批量RNA-seq样本、110例内部和214例公共批量蛋白质组学样本 |
655 | 2025-04-12 |
Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects
2025-Feb, Best practice & research. Clinical gastroenterology
DOI:10.1016/j.bpg.2025.101975
PMID:40210329
|
综述 | 本文综述了人工智能(AI)与内镜超声(EUS)结合在胆胰病变早期检测中的当前进展和未来前景 | AI驱动的模型(如机器学习和深度学习)显著提高了诊断准确性,特别是在区分胰腺导管腺癌与良性病变及胰腺囊性肿瘤的特征分析方面 | 数据标准化、模型可解释性以及数据隐私的伦理问题仍是挑战 | 探讨AI与EUS结合在胆胰病变早期检测和管理中的潜力 | 胆胰病变,包括胰腺导管腺癌(PDAC)、良性病变及胰腺囊性肿瘤 | 数字病理 | 胰腺癌 | 机器学习和深度学习 | CNN | 图像 | NA |
656 | 2025-04-11 |
Advanced predictive machine and deep learning models for round-ended CFST column
2025-Feb-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90648-2
PMID:39979519
|
research paper | 本研究开发了机器学习和深度学习模型,用于预测圆端混凝土填充钢管(CFST)柱的轴向承载能力,并与现有分析方法进行性能对比 | 使用CatBoost模型在预测CFST柱轴向承载能力方面取得了最高准确度,并开发了用户友好的Python界面用于实时预测 | 深度学习模型(如DNN和LSTM)在此任务中表现不如机器学习模型有效 | 开发准确的数据驱动方法,预测圆端CFST柱的轴向承载能力 | 圆端混凝土填充钢管(CFST)柱 | machine learning | NA | 机器学习(LightGBM、XGBoost、CatBoost)和深度学习(DNN、CNN、LSTM) | LightGBM, XGBoost, CatBoost, DNN, CNN, LSTM | 结构化数据(混凝土强度、柱长、截面尺寸、钢管厚度和屈服强度等) | 200个CFST短柱试验数据 |
657 | 2025-04-09 |
Synthetic Diffusion Tensor Imaging Maps Generated by 2D and 3D Probabilistic Diffusion Models: Evaluation and Applications
2025-Feb-25, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.21.639511
PMID:40060678
|
research paper | 评估和比较2D和3D概率扩散模型生成的合成扩散张量成像(DTI)图的质量及其在下游任务中的应用 | 首次评估和比较2D和3D DDPMs生成的合成DTI图的质量及其在下游任务中的表现,并展示3D合成优于2D切片生成 | 研究仅评估了MD图,未涵盖DTI所有参数;下游任务仅涉及性别分类和痴呆分类 | 解决DTI数据稀缺和隐私问题,并通过合成数据增强深度学习方法的训练数据 | 合成DTI MD图及其在性别分类和痴呆分类任务中的应用 | digital pathology | dementia | denoising diffusion probabilistic models (DDPMs) | 2D和3D CNNs | image | NA |
658 | 2025-04-09 |
CellSAM: A Foundation Model for Cell Segmentation
2025-Feb-16, bioRxiv : the preprint server for biology
DOI:10.1101/2023.11.17.567630
PMID:38045277
|
research paper | 提出了一种名为CellSAM的通用细胞分割模型,能够跨多种细胞成像数据进行泛化 | 基于Segment Anything Model (SAM)开发了一种提示工程方法,用于掩模生成,并训练了一个名为CellFinder的对象检测器来自动检测细胞并提示SAM生成分割 | 未提及具体限制 | 开发一个能够跨多种细胞成像数据泛化的通用细胞分割模型 | 哺乳动物细胞、酵母和细菌的成像数据 | digital pathology | NA | deep learning, prompt engineering | SAM, object detector (CellFinder) | image | 多种成像模态下的哺乳动物细胞、酵母和细菌图像 |
659 | 2025-04-09 |
Deep learning-based hyperspectral technique identifies metastatic lymph nodes in oral squamous cell carcinoma-A pilot study
2025-Feb, Oral diseases
IF:2.9Q1
DOI:10.1111/odi.15067
PMID:39005220
|
研究论文 | 本研究基于高光谱成像和深度学习技术,开发了一种用于检测口腔鳞状细胞癌转移淋巴结中癌细胞的系统 | 采用改进的ResUNet算法分析癌细胞与淋巴细胞以及肿瘤组织与正常组织之间的光谱曲线差异 | 研究样本量较小,仅为45例口腔鳞状细胞癌患者的转移淋巴结 | 建立一种高精度、高效率的病理诊断方法,用于识别口腔鳞状细胞癌转移淋巴结中的肿瘤组织 | 45例口腔鳞状细胞癌(OSCC)患者的转移淋巴结连续切片 | 数字病理 | 口腔鳞状细胞癌 | 高光谱成像 | 改进的ResUNet | 高光谱图像 | 45例OSCC患者的转移淋巴结 |
660 | 2025-04-06 |
Conv-MTD: A CNN Based Multi-Label Medical Tubes Detection and Classification Model to Facilitate Resource-constrained Point-of-care Devices
2025-Feb-18, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3543245
PMID:40036431
|
research paper | 提出了一种基于CNN的多标签医疗管检测与分类模型Conv-MTD,用于辅助资源受限的即时医疗设备 | 利用EfficientNet-B7架构作为主干,并在中间层增强辅助头以缓解梯度消失问题,同时采用16位浮点量化优化模型 | 未提及模型在多样化数据集上的泛化能力或实际临床环境中的测试结果 | 开发一种自动化检测和分类医疗管放置位置的模型,以辅助放射科医生 | 医疗管的放置位置检测与分类 | digital pathology | NA | CXR imaging | CNN, EfficientNet-B7 | image | NA |