本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 661 | 2025-03-04 |
Ligand-receptor interactions combined with histopathology for improved prognostic modeling in HPV-negative head and neck squamous cell carcinoma
2025-Feb-28, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00844-6
PMID:40021759
|
研究论文 | 本文通过结合配体-受体相互作用和组织病理学,改进了HPV阴性头颈部鳞状细胞癌的预后模型 | 结合BulkSignalR识别配体-受体相互作用,利用随机森林生存分析和LASSO惩罚Cox回归开发预后模型,并通过深度学习组织形态学分析进一步改进风险分层 | 研究样本仅限于TCGA-HNSC队列,可能无法完全代表所有HPV阴性头颈部鳞状细胞癌患者 | 改进HPV阴性头颈部鳞状细胞癌的预后模型,识别治疗靶点 | HPV阴性头颈部鳞状细胞癌患者 | 数字病理学 | 头颈部鳞状细胞癌 | BulkSignalR, 随机森林生存分析, LASSO惩罚Cox回归, 深度学习 | 随机森林, LASSO回归, 深度学习模型 | 多组学数据, HE染色全片图像 | 395例HPV阴性TCGA-HNSC队列患者 | NA | NA | NA | NA |
| 662 | 2025-03-04 |
A computational spectrometer for the visible, near, and mid-infrared enabled by a single-spinning film encoder
2025-Feb-28, Communications engineering
DOI:10.1038/s44172-025-00379-5
PMID:40021937
|
研究论文 | 本文提出了一种结合单旋转薄膜编码器(SSFE)和深度学习重建算法的计算光谱仪,覆盖可见光到中红外波长范围 | 通过粒子群优化(PSO)实现低相关性和高复杂度的光谱响应,展示了在可见光、近红外和中红外波长范围内的单峰和双峰分辨率 | NA | 开发一种低成本、原位、快速光谱分析的计算光谱仪 | 光谱仪的光谱响应和化学化合物的分类 | 机器学习和光学工程 | NA | 粒子群优化(PSO)和深度学习 | 深度学习算法 | 光谱数据 | 220种化学化合物 | NA | NA | NA | NA |
| 663 | 2025-03-04 |
Improved Microbubble Tracking for Super-Resolution Ultrasound Localization Microscopy using a Bi-Directional Long Short-term Memory Neural Network
2025-Feb-14, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.10.637352
PMID:39990416
|
研究论文 | 本文提出了一种基于双向长短期记忆神经网络的深度学习微泡配对和跟踪方法,用于超分辨率超声定位显微镜 | 该方法整合了多参数微泡特征,以实现更稳健和准确的微泡配对和跟踪 | 方法在模拟数据集、组织模拟流动模型以及小鼠和大鼠脑部进行了验证,但未提及在人类临床数据上的应用 | 提高超分辨率超声定位显微镜中微泡跟踪的准确性和鲁棒性 | 微泡(MBs) | 医学影像 | NA | 超分辨率超声定位显微镜(ULM) | 双向长短期记忆神经网络(Bi-Directional LSTM) | 超声图像 | 模拟数据集、组织模拟流动模型、小鼠和大鼠脑部 | NA | NA | NA | NA |
| 664 | 2025-03-04 |
Validation of ten federated learning strategies for multi-contrast image-to-image MRI data synthesis from heterogeneous sources
2025-Feb-11, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.09.637305
PMID:39990397
|
研究论文 | 本文验证了十种联邦学习策略在多对比度MRI图像合成中的应用,特别是在处理来自不同机构的异质数据时 | 提出了一种新的聚合策略FedBAdam,结合了两种最先进方法的优势,通过引入动量并跳过批量归一化层来优化模型参数 | 研究主要关注脑部扫描,未涉及其他类型的医学影像数据 | 验证联邦学习策略在多对比度MRI图像合成中的有效性,特别是在处理异质数据时的性能 | 健康和肿瘤性脑部扫描数据 | 医学影像 | 脑部肿瘤 | 联邦学习(FL) | 深度学习模型 | MRI图像 | 来自五个不同机构的脑部扫描数据 | NA | NA | NA | NA |
| 665 | 2025-10-07 |
Sleep onset time as a mediator in the association between screen exposure and aging: a cross-sectional study
2025-Feb, GeroScience
IF:5.3Q1
DOI:10.1007/s11357-024-01321-x
PMID:39190220
|
研究论文 | 本研究探讨屏幕暴露时间通过睡眠开始时间中介对中老年人群视网膜年龄差距的影响 | 首次使用深度学习算法基于眼底图像预测视网膜年龄,并发现睡眠开始时间在屏幕使用与视网膜年龄差距关系中的中介作用 | 横断面研究设计无法确定因果关系,研究对象仅限于上海地区45岁以上健康工作者 | 研究屏幕暴露时间对中老年人群衰老的影响及其作用机制 | 中国上海45岁以上健康工作成年人 | 数字病理 | 老年疾病 | 眼底成像 | 深度学习 | 图像, 问卷数据 | 未明确具体样本数量(上海地区45岁以上健康工作者) | NA | NA | 回归系数, 置信区间, p值 | NA |
| 666 | 2025-10-07 |
Assessment of the stability of intracranial aneurysms using a deep learning model based on computed tomography angiography
2025-Feb, La Radiologia medica
DOI:10.1007/s11547-024-01939-z
PMID:39666223
|
研究论文 | 本研究基于CT血管造影图像构建深度学习模型,用于识别颅内动脉瘤的稳定性 | 首次将临床特征、形态学特征和深度学习特征相结合构建卷积神经网络模型,用于预测颅内动脉瘤稳定性 | 回顾性研究设计,样本量相对有限,需要进一步前瞻性验证 | 构建深度学习模型评估颅内动脉瘤稳定性,辅助临床决策 | 1041名患者的1227个颅内动脉瘤 | 计算机视觉 | 脑血管疾病 | 计算机断层扫描血管造影(CTA) | CNN, 逻辑回归 | 医学图像 | 总共1456个动脉瘤(内部验证991个,外部验证229个) | NA | 卷积神经网络 | AUC, 准确率, 灵敏度, 特异性 | NA |
| 667 | 2025-03-03 |
A hybrid multi model artificial intelligence approach for glaucoma screening using fundus images
2025-Feb-27, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01473-w
PMID:40016437
|
研究论文 | 本文提出了一种基于人工智能的混合多模型方法,用于通过眼底图像进行青光眼筛查 | 使用六个轻量级深度学习模型(总大小:110 MB)分析眼底图像,以识别早期结构变化,如视盘凹陷、出血和神经纤维层缺陷 | 在真实世界测试中,独立二元青光眼分类模型的灵敏度下降至0.5652,而完整AI-GS网络的灵敏度保持在0.8053 | 开发一种高效且准确的人工智能方法,用于青光眼的早期筛查 | 眼底图像 | 计算机视觉 | 青光眼 | 深度学习 | 混合多模型 | 图像 | NA | NA | NA | NA | NA |
| 668 | 2025-03-03 |
A deep learning based ultrasound diagnostic tool driven by 3D visualization of thyroid nodules
2025-Feb-27, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01455-y
PMID:40016505
|
研究论文 | 本研究开发了一种基于深度学习的两阶段框架,利用动态超声视频进行甲状腺结节诊断的工具TNVis,通过三维可视化提高诊断准确性 | 利用动态超声视频和三维可视化技术,开发了一种新的甲状腺结节诊断工具TNVis,显著提高了放射科医生的诊断能力 | NA | 提高甲状腺结节的诊断准确性 | 甲状腺结节 | 计算机视觉 | 甲状腺疾病 | 深度学习 | 两阶段深度学习框架 | 动态超声视频 | 4569例病例 | NA | NA | NA | NA |
| 669 | 2025-03-03 |
Simultaneous profiling of ac4C and m5C modifications from nanopore direct RNA sequencing
2025-Feb-13, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.140863
PMID:39954891
|
研究论文 | 本研究开发了一种名为modCnet的深度学习框架,利用纳米孔直接RNA测序技术同时识别ac4C和m5C修饰 | 首次实现了从纳米孔直接RNA测序数据中同时进行ac4C和m5C修饰的从头识别 | 需要进一步验证在更广泛生物样本中的应用效果 | 研究RNA修饰(ac4C和m5C)在mRNA稳定性和翻译效率中的作用 | 人类细胞系中的mRNA | 生物信息学 | NA | 纳米孔直接RNA测序 | 深度学习框架(modCnet) | RNA测序数据 | 人类细胞系中的mRNA样本 | NA | NA | NA | NA |
| 670 | 2025-03-02 |
Fusion of circulant singular spectrum analysis and multiscale local ternary patterns for effective spectral-spatial feature extraction and small sample hyperspectral image classification
2025-Feb-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90926-z
PMID:40011533
|
研究论文 | 本文提出了一种新颖的循环奇异谱分析(CiSSA)和多尺度局部三值模式融合方法,用于高光谱图像的联合光谱-空间特征提取和分类 | 结合循环奇异谱分析和多尺度局部三值模式进行光谱-空间特征提取,提高了小样本高光谱图像分类的准确性 | 仅在高光谱图像数据集上进行了实验,未在其他类型数据上验证 | 提高小样本高光谱图像分类的准确性 | 高光谱图像 | 计算机视觉 | NA | PCA, CiSSA, LTP, SVM | SVM | 图像 | 三个高光谱图像数据集(Indian Pines, Pavia University, Houston2013),训练样本比例为1% | NA | NA | NA | NA |
| 671 | 2025-03-02 |
Improved sand cat swarm optimization algorithm assisted GraphSAGE-GRU for remaining useful life of engine
2025-Feb-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-91418-w
PMID:40011762
|
研究论文 | 本文提出了一种改进的沙猫群优化算法辅助的GraphSAGE-GRU模型,用于预测发动机的剩余使用寿命(RUL) | 提出了改进的沙猫群优化算法(ISCSO)来增强GraphSAGE-GRU的预测性能,包括在种群初始化中使用帐篷映射和一种新的自适应方法来增强沙猫群优化的探索和开发能力 | 未提及具体局限性 | 提高发动机剩余使用寿命(RUL)预测的准确性 | 发动机 | 机器学习 | NA | GraphSAGE-GRU, 沙猫群优化算法 | GraphSAGE-GRU | 图数据 | 使用CMAPSS数据集进行验证 | NA | NA | NA | NA |
| 672 | 2025-03-02 |
Infrared spectrum analysis of organic molecules with neural networks using standard reference data sets in combination with real-world data
2025-Feb-26, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-025-00960-2
PMID:40011923
|
研究论文 | 本研究提出了一种基于神经网络的IR光谱分析方法,用于检测有机分子中的功能基团 | 该方法仅使用IR数据作为神经网络的输入,使其性能独立于其他分析测量获得的数据类型,并且通过结合来自不同实验室的真实数据,展示了开放获取的专业研究数据仓库作为未来机器学习研究的宝贵基准数据集的潜力 | NA | 分析IR光谱并检测有机分子中的功能基团 | 有机分子 | 机器学习 | NA | IR光谱分析 | 神经网络 | 光谱数据 | NIST数据集和Chemotion开放获取研究数据仓库中的数据 | NA | NA | NA | NA |
| 673 | 2025-10-07 |
Single-cell transcriptome-wide Mendelian randomization and colocalization reveals immune-mediated regulatory mechanisms and drug targets for COVID-19
2025-Feb-10, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2025.105596
PMID:39933264
|
研究论文 | 本研究通过单细胞转录组孟德尔随机化和共定位分析,揭示了COVID-19的免疫介导调控机制并确定了潜在药物靶点 | 首次在14种外周血免疫细胞中系统开展单细胞表达数量性状位点分析,发现58个新基因和81%的推定因果基因与SARS-COV-2蛋白存在相互作用 | 基于遗传数据的推断需要进一步实验验证,样本来源和细胞类型有限 | 揭示COVID-19的免疫介导调控机制并识别潜在药物靶点 | 14种外周血免疫细胞中的16,597个基因 | 生物信息学 | COVID-19 | 单细胞转录组测序, 孟德尔随机化, 共定位分析, 深度学习 | 深度学习模型 | 单细胞基因表达数据, 基因组数据 | 26,597个单细胞表达数量性状位点 | NA | NA | NA | NA |
| 674 | 2025-03-02 |
Geometric Self-Supervised Learning: A Novel AI Approach Towards Quantitative and Explainable Diabetic Retinopathy Detection
2025-Feb-06, Bioengineering (Basel, Switzerland)
DOI:10.3390/bioengineering12020157
PMID:40001677
|
研究论文 | 本文提出了一种基于几何自监督学习的新型AI方法,用于糖尿病视网膜病变(DR)的定量和可解释检测 | 开发了一种无需标注的深度学习策略,用于自动检测彩色眼底摄影(CFP)图像和超广角(UWF)视网膜图像中的渗出物和出血点 | 模型在UWF图像上的性能因病变大小而异,小病变的假阳性率较高 | 开发和验证一种自动检测糖尿病视网膜病变相关病变的深度学习模型 | 彩色眼底摄影(CFP)图像和超广角(UWF)视网膜图像 | 计算机视觉 | 糖尿病视网膜病变 | 深度学习 | U-Net | 图像 | 两个CFP队列(Kaggle-CFP和E-Ophtha)和一个UWF队列,其中50例DR阳性病例用于独立测试 | NA | NA | NA | NA |
| 675 | 2025-10-07 |
Predicting RNA structure and dynamics with deep learning and solution scattering
2025-Feb-04, Biophysical journal
IF:3.2Q2
DOI:10.1016/j.bpj.2024.12.024
PMID:39722452
|
研究论文 | 开发了一种结合深度学习和构象采样的RNA溶液结构预测工具SCOPER,用于改进RNA结构与溶液散射数据的匹配 | 提出了整合运动学构象采样与新型深度学习模型IonNet的完整流程,首次系统解决了RNA结构中阳离子缺失和构象可塑性表征不足的挑战 | 需要提供初始的足够准确的结构作为输入,且需谨慎调整可塑性和离子密度以避免对实验数据的过拟合 | 改进RNA分子在溶液中的结构预测和验证方法 | RNA分子的三维结构和溶液构象 | 计算生物学 | NA | 小角X射线散射(SAXS), 深度学习 | 深度学习模型 | SAXS剖面数据, 结构数据 | 14个实验数据集 | NA | IonNet | SAXS剖面拟合质量 | NA |
| 676 | 2025-02-05 |
Direct estimation of fetal biometry measurements from ultrasound video scans through deep learning
2025-Feb-01, American journal of obstetrics & gynecology MFM
IF:3.8Q1
DOI:10.1016/j.ajogmf.2025.101623
PMID:39900243
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 677 | 2025-10-07 |
Multigas Identification by Temperature-Modulated Operation of a Single Anodic Aluminum Oxide Gas Sensor Platform and Deep Learning Algorithm
2025-Feb-28, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.4c02715
PMID:39831774
|
研究论文 | 本研究通过温度调制单阳极氧化铝气体传感器平台结合深度学习算法实现多气体识别 | 采用温度调制操作的单一SMO气体传感器结合CNN算法解决气体选择性难题 | 仅测试了四种气体(丙酮、氨、乙醇、二氧化氮),未涉及更复杂的气体混合物 | 解决半导体金属氧化物气体传感器的选择性限制问题 | 丙酮、氨、乙醇、二氧化氮四种气体 | 机器学习 | NA | 温度调制传感技术 | CNN | 气体响应数据 | 四种气体的响应数据 | NA | 卷积神经网络 | 分类准确率, MAPE | NA |
| 678 | 2025-03-01 |
Diagnostic accuracy of convolutional neural network algorithms to distinguish gastrointestinal obstruction on conventional radiographs in a pediatric population
2025-Feb-28, Diagnostic and interventional radiology (Ankara, Turkey)
DOI:10.4274/dir.2025.242950
PMID:40018794
|
研究论文 | 本研究旨在使用卷积神经网络(CNN)模型区分儿童腹部X光片中的正常肠道气体分布与胃肠道扩张或梗阻,并进一步区分需要手术的梗阻患者与其他胃肠道扩张或肠梗阻患者 | 本研究首次在儿科人群中应用CNN模型进行胃肠道梗阻的诊断,并评估手术与药物治疗的需求 | 研究样本量相对较小,且仅来自单一机构,可能影响模型的泛化能力 | 开发一种高精度的深度学习模型,用于儿科急诊中胃肠道梗阻的快速诊断 | 儿科患者的腹部X光片 | 计算机视觉 | 胃肠道疾病 | 卷积神经网络(CNN) | ResNet50, InceptionResNetV2, Xception, EfficientNetV2L, ConvNeXtXLarge | 图像 | 540例正常,298例手术矫正扩张(SD),314例炎症/感染性扩张(ID) | NA | NA | NA | NA |
| 679 | 2025-03-01 |
Preoperative prediction of the Lauren classification in gastric cancer using automated nnU-Net and radiomics: a multicenter study
2025-Feb-25, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-01923-9
PMID:40000513
|
研究论文 | 本研究开发并验证了一种基于nnU-Net结合放射组学的深度学习模型,用于胃癌的自动分割和Lauren分类的术前预测 | 结合nnU-Net和放射组学技术,实现了胃癌的自动分割和Lauren分类的术前预测,减少了医生手动分割的错误和工作量 | 研究结果在不同测试集上的AUC值略有差异,且放射组学模型和组合模型的AUC值无显著统计学差异 | 开发并验证一种深度学习模型,用于胃癌的自动分割和Lauren分类的术前预测 | 胃癌患者 | 数字病理学 | 胃癌 | nnU-Net, 放射组学 | nnU-Net, LASSO | CT图像 | 433名胃癌患者 | NA | NA | NA | NA |
| 680 | 2025-03-01 |
A deep learning based prediction model for effective elastic properties of porous materials
2025-Feb-25, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-90016-0
PMID:40000677
|
研究论文 | 本文提出了一种基于深度学习的预测模型,用于预测多孔材料的有效弹性性能 | 通过算法随机生成多孔微结构模型,并使用高效的四叉树算法计算其力学性能,进而建立基于神经网络的机器学习算法来预测多孔材料的力学性能 | NA | 分析多孔材料的力学性能,提供一种新的基于微结构图像的预测方法 | 多孔材料 | 机器学习 | NA | 神经网络 | 神经网络 | 图像 | 大量机器学习样本数据 | NA | NA | NA | NA |