深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202502-202502] [清除筛选条件]
当前共找到 1246 篇文献,本页显示第 721 - 740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
721 2025-03-14
Binary Classification of Laryngeal Images Utilising ResNet-50 CNN Architecture
2025-Feb, Indian journal of otolaryngology and head and neck surgery : official publication of the Association of Otolaryngologists of India
研究论文 本研究提出了一种利用ResNet-50 CNN架构对喉部图像进行二分类的新方法,旨在通过分析内窥镜图像来早期检测喉癌 使用ResNet-50 CNN架构对喉部图像进行二分类,结合深度学习和图像处理技术,提高了喉癌早期检测的准确性 由于数据稀缺,研究将数据分为癌症和非癌症两类,未能涵盖所有九种形态类别 早期检测和分类喉癌 喉部内窥镜图像 计算机视觉 喉癌 深度学习,图像处理 ResNet-50 CNN 图像 1978张内窥镜图像,来自960名患者
722 2025-03-13
Unified resilience model using deep learning for assessing power system performance
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文介绍了一种使用深度学习的统一弹性模型(URM),以提高电力系统的性能 提出了一种结合深度学习的统一弹性模型,用于分析影响电池和储能设备弹性的环境因素,并通过已知的低弹性损耗数据进行训练,以增强各种强化因素 NA 提高电力系统的性能,特别是关注天气因素对系统弹性的影响 电池和储能设备的弹性 机器学习 NA 深度学习 深度学习模型 环境因素数据、低弹性损耗数据 NA
723 2025-03-13
Rewiring protein sequence and structure generative models to enhance protein stability prediction
2025-Feb-18, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为SPURS的新型深度学习框架,通过整合两种通用蛋白质生成模型(ESM和ProteinMPNN),提升了蛋白质稳定性预测的准确性 SPURS通过轻量级神经网络模块将ProteinMPNN学习到的结构表示重新连接到ESM的注意力层,从而增强了ESM的序列表示学习能力,实现了从序列和结构数据中利用进化模式进行稳定性预测 尽管SPURS在多个基准数据集上表现出色,但其在蛋白质稳定性预测中的潜力仍需进一步探索,特别是在更广泛的蛋白质功能预测方面 提升蛋白质稳定性预测的准确性,以更好地理解人类疾病并设计用于临床和工业应用的有用蛋白质 蛋白质 机器学习 NA 深度学习 ESM, ProteinMPNN 序列数据, 结构数据 基于最近发布的大规模热稳定性数据集进行训练和评估
724 2025-03-12
[Generative artificial intelligence ChatGPT in clinical nutrition - Advances and challenges]
2025-Feb-26, Nutricion hospitalaria IF:1.2Q4
研究论文 本文探讨了生成式人工智能ChatGPT在临床营养学中的应用进展与挑战 ChatGPT在营养评估、个性化干预建议和患者进展监测方面展现了潜力,特别是在计算热量需求和推荐营养丰富的食物方面表现出色 ChatGPT在解释非语言线索、进行体格检查、整合多种医疗条件以及确保膳食计划的准确性方面存在不足,生成的计划可能出现显著的热量偏差和微量营养素失衡 研究ChatGPT在临床营养管理中的应用潜力及其局限性 临床营养管理中的患者 自然语言处理 NA 机器学习和深度学习 ChatGPT 临床记录数据 NA
725 2025-03-12
Artificial Intelligence in Myopic Maculopathy: A Comprehensive Review of Identification, Classification, and Monitoring Using Diverse Imaging Modalities
2025-Feb, Cureus
综述 本文综述了人工智能(AI)在近视性黄斑病变识别、分类和监测中的应用,主要使用传统成像技术如眼底摄影和光学相干断层扫描(OCT) 本文综合分析了2018年至2024年间发表的13项研究,探讨了机器学习和深度学习算法在高度近视病例诊断、分类和随访中的角色,揭示了AI模型在疾病诊断中的支持作用 大多数研究集中在中国,且主要关注近视性黄斑变性和高度近视患者,可能限制了结果的普遍性 探讨AI工具在近视性黄斑病变检测中的有效性和实用性 近视性黄斑病变患者 数字病理学 近视性黄斑病变 眼底摄影, 光学相干断层扫描(OCT) ResNet-18, ResNet-50, ResNet-101, DeepLabv3+, DarkNet-19, Efficient Net (B0/B7), VOLO-D2, Efficient Former, ALFA-Mix+, XGBoost 图像 13项研究,主要来自中国
726 2025-03-11
gRNAde: Geometric Deep Learning for 3D RNA inverse design
2025-Feb-25, ArXiv
PMID:38827456
研究论文 本文介绍了gRNAde,一种基于几何深度学习的3D RNA逆设计管道,旨在设计考虑结构和动力学的RNA序列 gRNAde通过多状态图神经网络和自回归解码,生成基于一个或多个3D骨架结构的候选RNA序列,显著提高了序列恢复率 尽管gRNAde在单状态固定骨架重新设计基准测试中表现优异,但在多状态设计方面的应用仍需进一步验证 研究目的是开发一种能够考虑3D构象多样性的RNA序列设计方法 研究对象是RNA序列及其3D骨架结构 机器学习 NA 几何深度学习 图神经网络(GNN) 3D结构数据 14个来自PDB的RNA结构
727 2025-03-11
ralphi: a deep reinforcement learning framework for haplotype assembly
2025-Feb-21, bioRxiv : the preprint server for biology
研究论文 本文介绍了一种名为ralphi的深度强化学习框架,用于单倍型组装,该框架结合了深度学习的表示能力和强化学习,以准确地将读取片段分配到各自的单倍型集合中 ralphi框架首次将深度学习和强化学习结合用于单倍型组装,通过片段图的经典问题简化来设定强化学习的奖励目标 NA 研究目的是开发一种新的方法,以更准确地组装个体二倍体基因组的单倍型 个体二倍体基因组的单倍型 机器学习 NA ONT读取 深度强化学习 基因读取数据 来自1000 Genomes Project的基因组数据
728 2025-03-11
Long-Term Carotid Plaque Progression and the Role of Intraplaque Hemorrhage: A Deep Learning-Based Analysis of Longitudinal Vessel Wall Imaging
2025-Feb-19, medRxiv : the preprint server for health sciences
研究论文 本研究利用深度学习技术分析颈动脉斑块长期进展及斑块内出血(IPH)的作用 首次使用深度学习分割管道在长期随访中识别IPH、量化IPH体积,并测量其对颈动脉斑块负担的影响 样本量较小(28名无症状颈动脉粥样硬化患者),且仅针对无症状患者进行研究 评估IPH对颈动脉斑块负担长期进展的影响 无症状颈动脉粥样硬化患者 数字病理 心血管疾病 多对比磁共振血管壁成像(VWI) 深度学习分割管道 图像 28名无症状颈动脉粥样硬化患者,共50条动脉
729 2025-03-11
Global Deep Forecasting with Patient-Specific Pharmacokinetics
2025-Feb-12, ArXiv
PMID:37965077
研究论文 本文提出了一种新颖的混合全局-局部架构和药代动力学编码器,用于预测医疗时间序列数据,特别是在血糖预测任务中展示了其有效性 提出了一种混合全局-局部架构和药代动力学编码器,能够为深度学习模型提供患者特定的治疗效果信息 未明确提及具体局限性 提高医疗时间序列数据预测的准确性,特别是在患者特定药代动力学影响下的血糖预测 医疗时间序列数据,特别是血糖数据 机器学习 糖尿病 深度学习 混合全局-局部架构 时间序列数据 模拟数据和真实世界数据
730 2025-03-09
A Hardware Accelerator for Real-Time Processing Platforms Used in Synthetic Aperture Radar Target Detection Tasks
2025-Feb-07, Micromachines IF:3.0Q2
研究论文 本文设计了一种用于合成孔径雷达(SAR)目标检测任务的低功耗、低延迟深度学习加速器,以实现在机载和卫星SAR平台上的实时目标检测 提出了一种适用于多维卷积并行计算的Process Engine(PE),并设计了独特的存储器排列方案,以提高FPGA的计算效率和内存读写效率 实验仅在Virtex 7 690t芯片上进行,未涉及其他硬件平台或更广泛的应用场景 解决当前GPU实时处理平台在机载或卫星应用中的功耗问题,实现SAR图像的实时目标检测 合成孔径雷达(SAR)图像 计算机视觉 NA 深度学习 CNN, Yolov5s 图像 52.19张512×512大小的SAR图像每秒
731 2025-03-08
Iterative improvement of deep learning models using synthetic regulatory genomics
2025-Feb-21, bioRxiv : the preprint server for biology
研究论文 本文探讨了使用合成调控基因组学迭代改进深度学习模型的方法,特别是Enformer模型在预测DNA可及性方面的应用 通过合成调控基因组学数据对Enformer模型进行微调,显著减少了预测误差,并保持了在其他轨迹上的强预测性能 模型在序列与参考基因组差异较大时(如DHS顺序或方向的重排)预测能力较差 提高深度学习模型在预测与参考基因组序列不同的DNA可及性方面的性能 DNA可及性预测,特别是与疾病和性状相关的变异或工程序列 机器学习 NA 合成调控基因组学 Enformer 基因组序列数据 数十个DNase I超敏感位点(DHSs)的删除、倒置和重排
732 2025-03-06
XLTLDisNet: A novel and lightweight approach to identify tomato leaf diseases with transparency
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文提出了一种名为XLTLDisNet的新型轻量级深度学习模型,用于识别番茄叶部疾病,并增强了模型的可解释性 提出了一种新型轻量级深度学习模型XLTLDisNet,并集成了可解释性AI技术(如GRAD-CAM和LIME)以增强模型的可解释性 未提及具体局限性 通过早期检测番茄叶部疾病,减少农业损失并最大化产量 番茄叶部疾病 计算机视觉 NA 深度学习 XLTLDisNet 图像 PlantVillage番茄叶部疾病数据集,包含十类番茄叶部疾病(包括健康图像)
733 2025-03-06
A hybrid Bayesian network-based deep learning approach combining climatic and reliability factors to forecast electric vehicle charging capacity
2025-Feb-28, Heliyon IF:3.4Q1
研究论文 本文提出了一种结合气候和可靠性因素的混合贝叶斯网络深度学习模型,用于预测电动汽车充电容量 创新点在于将排队网络和贝叶斯网络模型与深度学习技术结合,以提高预测精度和基础设施可靠性 未明确提及具体局限性 开发一个综合系统,考虑气象条件和充电桩故障率等多种影响因素,以优化电动汽车基础设施 电动汽车充电需求 机器学习 NA 深度学习 混合贝叶斯网络深度学习(HBNDL) 交易数据和气候分析数据 未明确提及具体样本数量
734 2025-03-06
Predicting gene expression from histone marks using chromatin deep learning models depends on histone mark function, regulatory distance and cellular states
2025-Feb-08, Nucleic acids research IF:16.6Q1
研究论文 本文通过卷积和基于注意力的模型,研究了七种组蛋白标记在十一种细胞类型中的表达预测,探讨了组蛋白标记功能、基因组距离和细胞状态对转录的影响 本研究是迄今为止最全面的关于组蛋白标记与基因表达关系的研究,考虑了细胞状态、组蛋白标记功能和远端效应等关键因素,并使用深度学习模型进行预测 研究中未涉及所有可能的组蛋白标记和细胞类型,且模型的泛化能力有待进一步验证 探讨组蛋白标记活性与基因表达之间的复杂关系,并利用深度学习模型进行预测 七种组蛋白标记在十一种细胞类型中的表达 机器学习 NA 深度学习 卷积神经网络(CNN)、基于注意力的模型 基因组数据 十一种细胞类型
735 2025-03-06
Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种结合信息理论学习和因果表示学习的双生成对抗网络框架,旨在增强现代机器学习中的鲁棒性分布外泛化能力 创新点在于将信息理论学习和因果表示学习无缝集成到双生成对抗网络架构中,通过因果图和信息理论增强特征表示,并开发了一种双对抗训练机制 未明确提及具体限制 增强现代机器学习中的鲁棒性分布外泛化能力 现代智能制造和智能交通系统中的机器学习模型 机器学习 NA 信息理论学习(ITL)和因果表示学习(CRL) 双生成对抗网络(Dual-GAN) NA 基于一个开源数据集进行实验和评估
736 2025-03-06
Knowledge-Augmented Deep Learning and its Applications: A Survey
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
综述 本文综述了知识增强深度学习(KADL)的概念、主要任务及其在不同领域的应用 提供了一个广泛且完整的领域知识及其表示的分类法,系统回顾了现有技术,不同于现有综述对知识分类法的忽视 NA 探讨如何通过整合领域知识来提升深度学习模型的数据效率、泛化能力和可解释性 深度学习模型及其与领域知识的整合 机器学习 NA NA 深度学习模型 NA NA
737 2025-03-06
Dual Accuracy-Quality-Driven Neural Network for Prediction Interval Generation
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种用于回归任务中预测区间(PI)生成的神经网络方法,旨在提高深度学习模型在现实世界应用中的可靠性 设计了一种新颖的损失函数,用于PI生成网络,该函数考虑了目标估计网络的输出,并具有两个优化目标:最小化平均PI宽度和确保PI完整性,通过隐式最大化PI概率覆盖率的约束 NA 提高深度学习模型在回归任务中的不确定性量化能力,生成高质量的预测区间 回归任务中的神经网络模型 机器学习 NA 深度学习 神经网络 合成数据集、基准数据集、实际作物产量预测数据集 使用了一个合成数据集、八个基准数据集和一个实际作物产量预测数据集
738 2025-03-06
Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral Defenders
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种掩码空间-光谱自编码器(MSSA),用于增强高光谱图像(HSI)分析系统的鲁棒性,以抵御对抗攻击 提出了一种新的掩码空间-光谱自编码器(MSSA),结合自监督学习理论,通过掩码序列注意力学习(MSAL)模块和可学习图结构的图卷积网络(GCN)来增强HSI分析系统的鲁棒性 未明确提及具体局限性 增强高光谱图像分析系统对对抗攻击的鲁棒性 高光谱图像(HSI)分析系统 计算机视觉 NA 自监督学习,图卷积网络(GCN) 掩码空间-光谱自编码器(MSSA),图卷积网络(GCN) 高光谱图像 三个基准数据集
739 2025-03-06
A Lightweight Group Transformer-Based Time Series Reduction Network for Edge Intelligence and Its Application in Industrial RUL Prediction
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种轻量级组变压器时间序列缩减网络(GT-MRNet),用于工业剩余使用寿命(RUL)预测,旨在满足边缘智能的实时响应需求 GT-MRNet通过自适应选择必要的时间步长来减少计算量,采用轻量级组变压器提取特征,并提出时间序列缩减策略和多层次学习机制,显著降低了参数和计算成本 未明确提及具体局限性 开发一种适用于边缘设备的轻量级深度学习模型,用于工业剩余使用寿命(RUL)预测 工业设备的剩余使用寿命预测 机器学习 NA 深度学习 Transformer, GT-MRNet 时间序列数据 基于真实世界条件数据集的广泛实验结果
740 2025-03-06
Capsule Networks With Residual Pose Routing
2025-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种简单而有效的胶囊路由算法,称为残差姿态路由,用于构建更深层次的胶囊网络架构 通过残差姿态路由简化了胶囊路由算法的计算复杂度,并避免了梯度消失问题,同时构建了类似ResNet的深层胶囊网络架构 未提及具体局限性 提高胶囊网络在深度学习中的性能,特别是在图像分类、3D物体重建和分类以及2D显著性密集预测等任务中的应用 胶囊网络(CapsNets) 计算机视觉 NA 残差学习框架 ResCaps(残差胶囊网络) 图像 MNIST、AffNIST、SmallNORB、CIFAR-10/100等数据集
回到顶部