本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
741 | 2025-03-06 |
MDEformer: Mixed Difference Equation Inspired Transformer for Compressed Video Quality Enhancement
2025-Feb, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3354982
PMID:38285580
|
研究论文 | 本文提出了一种基于混合差分方程启发的新型Transformer模型(MDEformer),用于压缩视频质量增强 | MDEformer通过引入混合差分方程的图形概念,利用跨层跨注意力聚合(CCA)模块和分区边界平滑(PBS)模块,充分挖掘视频序列中的特征信息,有效去除压缩伪影并恢复帧的纹理和细节信息 | 未明确提及具体限制 | 提升压缩视频的质量 | 压缩视频 | 计算机视觉 | NA | 深度学习 | Transformer | 视频 | MFQE 2.0数据集 |
742 | 2025-03-06 |
Attentive Learning Facilitates Generalization of Neural Networks
2025-Feb, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3356310
PMID:38324433
|
研究论文 | 本文通过研究神经网络在训练样本中是否包含分布外(OoD)示例时的变化,探讨了神经网络的泛化能力 | 提出了一个新的概念——数据集分散稳定性(dataset-distraction stability),用于衡量OoD示例对网络预测的影响,并通过实验展示了其与泛化能力的负相关性 | 研究主要基于CIFAR-10/100数据集,未涉及其他数据集或实际应用场景 | 研究神经网络的泛化能力及其与训练数据分布的关系 | 神经网络在训练样本中的表现 | 机器学习 | NA | NA | VGG, ResNet, WideResNet, ViT | 图像数据 | CIFAR-10/100数据集 |
743 | 2025-03-06 |
eVAE: Evolutionary Variational Autoencoder
2025-Feb, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3359275
PMID:38546992
|
研究论文 | 本文提出了一种进化变分自编码器(eVAE),通过整合变分信息瓶颈理论和进化神经网络学习,解决了变分自编码器在表示推断和任务拟合之间的不平衡问题 | 首次引入进化变分自编码器(eVAE),结合变分遗传算法和进化算子,动态解决学习权衡不确定性,无需额外约束和超参数调优 | 未明确提及具体局限性 | 解决变分自编码器在表示推断和任务拟合之间的不平衡问题,并提高生成质量和推断平衡 | 变分自编码器(VAE)及其在文本生成和图像生成中的应用 | 机器学习 | NA | 变分遗传算法(VGA),变分突变(V-mutation),交叉和进化 | 进化变分自编码器(eVAE) | 文本和图像数据 | 未明确提及样本数量 |
744 | 2025-03-06 |
Light-based depth-sensing device with deep learning to measure spinal deformity: abridged secondary publication
2025-Feb, Hong Kong medical journal = Xianggang yi xue za zhi
PMID:40038080
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
745 | 2025-03-06 |
Integrative multi-environmental genomic prediction in apple
2025-Feb, Horticulture research
IF:7.6Q1
DOI:10.1093/hr/uhae319
PMID:40041603
|
研究论文 | 本文探讨了多环境基因组预测在苹果中的应用,通过整合表型、基因组和环境数据,提高了对特定土壤和气候条件下基因型选择的预测能力 | 本研究创新性地将统计模型和深度学习模型应用于多环境基因组预测,特别是通过整合基因型与环境交互效应,显著提高了预测能力 | 多环境数据集的构建和结构复杂模型的开发仍是主要挑战,限制了多环境基因组预测在苹果中的应用 | 研究目的是通过多环境基因组预测模型,选择适应不同环境条件的苹果品种,以应对气候变化的影响 | 研究对象是苹果的十一个性状,这些性状具有不同的遗传结构 | 机器学习 | NA | 基因组预测、深度学习 | G-BLUP、深度学习模型 | 表型数据、基因组数据、环境数据 | NA |
746 | 2025-03-05 |
Discordance between a deep learning model and clinical-grade variant pathogenicity classification in a rare disease cohort
2025-Feb-28, NPJ genomic medicine
IF:4.7Q1
DOI:10.1038/s41525-025-00480-w
PMID:40021654
|
研究论文 | 本文探讨了深度学习模型AlphaMissense在预测错义变体功能影响和评估基因必要性方面的局限性,特别是在罕见疾病队列中的表现 | 揭示了AlphaMissense在识别致病性错义变体方面的不足,尤其是在内在无序区域(IDRs)的评估上 | AlphaMissense在识别致病性错义变体方面的精确度和召回率较低,特别是在IDRs区域的表现不可靠 | 评估深度学习模型在罕见疾病中预测错义变体致病性的能力 | 罕见疾病队列中的错义变体 | 生物医学信息学 | 罕见疾病 | 深度学习 | AlphaMissense | 基因变异数据 | 45种罕见疾病队列 |
747 | 2025-03-05 |
Evaluating pedestrian crossing safety: Implementing and evaluating a convolutional neural network model trained on paired aerial and subjective perspective images
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42428
PMID:40028551
|
研究论文 | 本研究提出利用先进的深度学习神经网络自动评估行人过街和环岛的安全性,通过分析来自Google Maps和Google Street View的航拍和街景图像 | 利用ConvNextV2、ResNet50和ResNext50模型进行综合分析,并采用Mask R-CNN进行精确分割和检测,克服了传统数据标注的挑战 | 数据不平衡和变量复杂性(如可见性和停车距离)带来的挑战 | 提高行人过街安全性,实现大规模、客观的过街评估 | 法国各种城市和农村环境中的行人过街和环岛 | 计算机视觉 | NA | 深度学习 | ConvNextV2, ResNet50, ResNext50, Mask R-CNN | 图像 | 法国各种城市和农村环境中的行人过街和环岛 |
748 | 2025-03-05 |
Framework for smartphone-based grape detection and vineyard management using UAV-trained AI
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42525
PMID:40028582
|
研究论文 | 本文提出了一种结合无人机和智能手机技术的AI框架,用于葡萄串的自动检测和葡萄园管理 | 结合无人机和智能手机技术,利用无人机捕获的数据进行训练,提高了葡萄串检测的准确性和适应性,超越了传统和纯无人机方法 | 基于智能手机的图像收集用于模型训练是劳动密集型和成本高昂的 | 提高葡萄串检测的效率和准确性,减少葡萄园监测的时间和精力 | 葡萄园中的葡萄串 | 计算机视觉 | NA | 深度学习 | X-Decoder, YOLO | 图像, 视频 | 无人机视频数据集(BBCH77-BBCH79阶段)和智能手机拍摄的图像 |
749 | 2025-03-05 |
A GPR-based framework for assessing corrosivity of concrete structures using frequency domain approach
2025-Feb-28, Heliyon
IF:3.4Q1
DOI:10.1016/j.heliyon.2025.e42641
PMID:40028599
|
研究论文 | 本文提出了一种基于GPR的框架,用于评估混凝土结构的腐蚀性,采用频域分析方法 | 引入了一种更全面的GPR数据解释方法,包括时间和时频域分析,结合深度学习和频域分析技术 | 方法依赖于地面真实条件的验证,可能在实际应用中受到限制 | 开发一种更准确的GPR数据解释方法,用于评估混凝土结构的腐蚀性 | 混凝土结构中的钢筋腐蚀 | 无损检测 | NA | GPR, 短时傅里叶变换(STFT) | 深度学习 | GPR数据 | 钢筋混凝土墙的锤击和钢筋暴露验证 |
750 | 2025-03-05 |
CANDI: a web server for predicting molecular targets and pathways of cannabis-based therapeutics
2025-Feb-27, Journal of cannabis research
IF:4.1Q1
DOI:10.1186/s42238-025-00268-w
PMID:40016810
|
研究论文 | 本文介绍了CANDI,一个用于预测大麻基治疗分子靶点和途径的网页服务器 | 结合深度学习和传统大麻使用知识,开发了CANDI服务器,为大麻化合物的治疗潜力提供了新的预测工具 | NA | 研究大麻化合物的分子靶点和相关途径,以开发针对性的有效大麻基疗法 | 大麻化合物及其分子靶点和途径 | 自然语言处理 | 癌症 | 深度学习 | 基于注意力的神经网络 | 化合物-靶点相互作用数据 | NA |
751 | 2025-03-05 |
EMGANet: Edge-Aware Multi-Scale Group-Mix Attention Network for Breast Cancer Ultrasound Image Segmentation
2025-Feb-27, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3546345
PMID:40031552
|
研究论文 | 本文提出了一种名为EMGANet的边缘感知多尺度组混合注意力网络,用于乳腺癌超声图像分割 | EMGANet通过整合深度和边缘特征,有效解决了超声图像中边界模糊和斑点噪声的挑战 | NA | 提高乳腺癌超声图像分割的准确性 | 乳腺癌超声图像 | 计算机视觉 | 乳腺癌 | 深度学习 | EMGANet | 图像 | 927个样本(来自武汉大学人民医院的BUSIWHU数据集) |
752 | 2025-03-05 |
Comparative Study of Machine Learning and System Identification for Process Systems Engineering Dynamics
2025-Feb-26, Industrial & engineering chemistry research
IF:3.8Q2
DOI:10.1021/acs.iecr.4c03264
PMID:40026351
|
研究论文 | 本研究对传统系统辨识和现代机器学习模型在过程系统工程(PSE)动态系统数据驱动建模中的应用进行了全面基准测试 | 使用AutoSID框架,结合MLOps原则,对12种不同模型架构在11个PSE案例研究中进行比较,展示了贝叶斯优化和k折交叉验证在模型选择中的有效性 | 研究主要关注PSE应用,可能在其他领域的适用性有限 | 比较传统系统辨识和现代机器学习模型在PSE动态系统建模中的性能 | 过程系统工程(PSE)动态系统 | 机器学习 | NA | 贝叶斯优化, k折交叉验证 | 树集成模型, 深度学习模型 | 动态系统数据 | 11个PSE案例研究 |
753 | 2025-03-05 |
Generative Deep Learning-Based Efficient Design of Organic Molecules with Tailored Properties
2025-Feb-26, ACS central science
IF:12.7Q1
DOI:10.1021/acscentsci.4c00656
PMID:40028364
|
研究论文 | 本研究开发了一种生成式深度学习模型(Gen-DL),用于设计具有特定光学性质的有机分子 | 该模型能够利用分子结构-性质关系,生成具有指定光学性质的分子,并应用于实际场景 | NA | 加速具有特定性质分子的发现与设计 | 有机分子 | 机器学习 | NA | 生成式深度学习 | Gen-DL | 分子/溶剂对数据 | 71,424个分子/溶剂对 |
754 | 2025-03-05 |
Using wearable sensors and machine learning to assess upper limb function in Huntington's disease
2025-Feb-25, Communications medicine
IF:5.4Q1
DOI:10.1038/s43856-025-00770-5
PMID:40000872
|
研究论文 | 本研究利用可穿戴传感器和机器学习评估亨廷顿病患者的上肢功能 | 通过可穿戴传感器和深度学习模型监测现实世界中的上肢功能,提供更全面的疾病症状理解 | 样本量较小(HD=16, pHD=7, CTR=16),可能影响结果的普遍性 | 评估亨廷顿病患者的上肢功能,探索早期检测和远程监测的可能性 | 亨廷顿病患者(HD)、前驱期亨廷顿病患者(pHD)和对照组(CTR) | 机器学习 | 亨廷顿病 | 深度学习模型 | 统计和机器学习模型 | 传感器数据 | HD=16, pHD=7, CTR=16 |
755 | 2025-03-05 |
Proteomic Characterization of Cardioprotective Human Acellular Amniotic Fluid
2025-Feb-25, ACS omega
IF:3.7Q2
DOI:10.1021/acsomega.4c09451
PMID:40028051
|
研究论文 | 本文通过全球蛋白质组学分析,揭示了人类羊水(hAF)在心肌缺血再灌注损伤中的心脏保护作用的生物活性成分 | 首次基于质谱技术对足月无细胞人类羊水进行蛋白质组学表征,揭示了其免疫调节蛋白的多样性及其在心脏保护中的作用 | 研究样本量较小,仅包括六名患者的羊水样本 | 揭示人类羊水在心肌缺血再灌注损伤中的心脏保护作用的生物活性成分 | 足月无细胞人类羊水 | 蛋白质组学 | 心血管疾病 | 串联质谱 | NA | 蛋白质数据 | 六名患者的羊水样本 |
756 | 2025-03-05 |
Adaptive Metadata-Guided Supervised Contrastive Learning for Domain Adaptation on Respiratory Sound Classification
2025-Feb-25, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3545159
PMID:40031634
|
研究论文 | 本文提出了一种自适应元数据引导的监督对比学习方法,用于呼吸音分类的领域适应 | 利用呼吸音数据集中的元数据,探索元数据引导的领域适应方法,并引入一种自适应调整元数据组合的先进方法,以改善训练过程中的领域适应 | 未明确提及具体局限性 | 优化呼吸音分类模型,减少领域依赖性并提高检测准确性 | 呼吸音分类模型 | 机器学习 | 呼吸系统疾病 | 监督对比学习 | NA | 呼吸音数据 | ICBHI数据集和自有数据集 |
757 | 2025-03-05 |
Conditional Mutual Information Constrained Deep Learning for Classification
2025-Feb-24, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2025.3540014
PMID:40031861
|
研究论文 | 本文介绍了条件互信息(CMI)和归一化条件互信息(NCMI)的概念,用于衡量分类深度神经网络(DNN)在输出概率分布空间中的集中和分离性能 | 提出了基于NCMI约束的深度学习方法(CMIC-DL),并开发了一种新的交替学习算法来解决这种约束优化问题 | 未明确提及具体的研究局限性 | 提高深度神经网络在分类任务中的准确性和对抗攻击的鲁棒性 | 深度神经网络(DNN) | 机器学习 | NA | 条件互信息(CMI)和归一化条件互信息(NCMI) | 深度神经网络(DNN) | 图像 | CIFAR-100和ImageNet数据集 |
758 | 2025-03-05 |
Leveraging a Vision-Language Model with Natural Text Supervision for MRI Retrieval, Captioning, Classification, and Visual Question Answering
2025-Feb-20, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.15.638446
PMID:40027630
|
研究论文 | 本文介绍了一种基于向量检索和对比学习的框架,通过自然语言监督有效学习视觉脑MRI概念,并展示了该方法如何通过联合嵌入和自然语言监督识别影响阿尔茨海默病(AD)大脑的因素 | 提出了一种基于自然语言监督的多任务学习框架,能够执行MRI检索、MRI描述、MRI分类和视觉问答等多种任务,突破了传统深度学习算法在放射学研究中只能执行单一任务的限制 | 未提及具体的数据隐私保护措施和服务托管及数据存储的透明度问题 | 开发一种能够通过自然语言提示执行多种任务的深度学习算法,以提高放射学研究和医学研究中的数据处理效率和准确性 | 脑MRI图像 | 计算机视觉 | 阿尔茨海默病 | 自然语言监督、对比学习、自监督学习 | Transformer | 图像、文本 | NA |
759 | 2025-03-05 |
Parameter Efficient Fine-tuning of Transformer-based Masked Autoencoder Enhances Resource Constrained Neuroimage Analysis
2025-Feb-20, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.15.638442
PMID:40027656
|
研究论文 | 本文评估了在预训练的视觉Transformer上应用参数高效微调(PEFT)方法的效果,特别是在资源受限的神经影像分析中的应用 | 首次在神经影像分析中应用PEFT方法,显著减少了可训练参数数量,同时保持了或超越了传统全微调方法的性能 | 研究主要基于T1加权脑MRI数据,未涉及其他类型的神经影像数据 | 探索参数高效微调方法在神经影像分析中的应用效果 | T1加权脑MRI数据 | 计算机视觉 | 阿尔茨海默病, 帕金森病 | 参数高效微调(PEFT) | Transformer-based Masked Autoencoder (MAE) | 图像 | 258个训练扫描 |
760 | 2025-03-05 |
A multi-modal transformer for cell type-agnostic regulatory predictions
2025-Feb-12, Cell genomics
IF:11.1Q1
DOI:10.1016/j.xgen.2025.100762
PMID:39884279
|
研究论文 | 本文介绍了一种名为EpiBERT的多模态transformer模型,用于学习基因组序列和细胞类型特异性染色质可及性的通用表示 | EpiBERT通过基于掩码可及性的预训练目标,能够推广到未观察到的细胞状态,并在基因表达预测方面达到与仅使用序列的Enformer模型相当的准确性 | NA | 提高基于序列的深度神经网络在调控基因组学中的泛化能力 | 人类基因组的顺式调控语法 | 机器学习 | NA | 深度学习 | transformer | 基因组序列和染色质可及性数据 | NA |