本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
921 | 2025-02-18 |
CT-Based Deep Learning Predicts Prognosis in Esophageal Squamous Cell Cancer Patients Receiving Immunotherapy Combined with Chemotherapy
2025-Feb-15, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.01.046
PMID:39956748
|
研究论文 | 本研究构建了一个深度学习模型,用于预测接受免疫治疗联合化疗的食管鳞状细胞癌患者的生存结果 | 该研究创新性地结合了深度学习模型与临床特征,特别是通过分析肿瘤及周围区域的CT图像,提高了预测的准确性 | 模型的预测准确性在外部测试集上较低(C-index为0.60),表明模型可能在不同机构间的泛化能力有限 | 研究目的是开发一个深度学习模型,用于预测食管鳞状细胞癌患者在接受免疫治疗联合化疗后的生存风险 | 研究对象为482名接受免疫治疗联合化疗的食管鳞状细胞癌患者 | 数字病理学 | 食管鳞状细胞癌 | 深度学习 | 深度学习模型 | CT图像 | 482名患者(322名训练集,79名内部测试集,81名外部测试集) |
922 | 2025-02-18 |
Deep learning for automated hip fracture detection and classification : achieving superior accuracy
2025-Feb-01, The bone & joint journal
|
研究论文 | 本研究旨在开发和评估一种基于深度学习的模型,用于髋部骨折的分类,以提高诊断准确性 | 使用卷积神经网络(CNN)进行髋部骨折的分类,并利用DAMO-YOLO进行数据处理和增强,显著提高了诊断准确性 | 研究仅使用了回顾性数据,且外部验证数据集的样本量相对较小 | 提高髋部骨折的诊断准确性 | 髋部骨折的X光片 | 计算机视觉 | 髋部骨折 | 深度学习 | CNN | 图像 | 5,168张髋部前后位X光片(4,493张用于训练,675张用于验证) |
923 | 2025-02-17 |
Application of artificial intelligence in forecasting survival in high-grade glioma: systematic review and meta-analysis involving 79,638 participants
2025-Feb-15, Neurosurgical review
IF:2.5Q1
DOI:10.1007/s10143-025-03419-y
PMID:39954167
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析评估了基于人工智能的模型在预测高级别胶质瘤患者生存结果中的表现 | 本研究特别关注了人工智能在高级别胶质瘤复发中的潜力,并整合了临床、影像组学和遗传特征的多模态数据,显著提高了预测准确性 | 需要进一步的前瞻性、多中心研究验证以确保临床适用性 | 评估人工智能模型在预测高级别胶质瘤患者生存结果中的表现 | 高级别胶质瘤患者 | 机器学习 | 脑肿瘤 | 机器学习与深度学习 | 随机森林(RF)和逻辑回归(LR) | 临床数据、影像组学数据和遗传数据 | 79,638名患者 |
924 | 2025-02-17 |
Towards an interpretable deep learning model of cancer
2025-Feb-14, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00822-y
PMID:39948231
|
研究论文 | 本文探讨了使用深度学习算法整合组学数据和分子网络先验知识,以构建可解释的癌症深度学习模型 | 提出利用深度学习算法整合组学数据和分子网络先验知识,以解决癌症治疗中的分子原因推断问题 | 目前此类模型受到实验和计算限制的阻碍 | 构建系统范围的计算机模型,以快速生成和测试假设,解决癌症治疗中的分子原因推断问题 | 癌症细胞状态及其分子网络 | 机器学习 | 癌症 | 深度学习 | 深度学习模型 | 组学数据 | NA |
925 | 2025-02-17 |
CT-based detection of clinically significant portal hypertension predicts post-hepatectomy outcomes in hepatocellular carcinoma
2025-Feb-14, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11411-9
PMID:39953152
|
研究论文 | 本研究评估了基于CT的临床显著门静脉高压(CSPH)检测对肝细胞癌(HCC)患者肝切除术后预后的影响 | 首次将基于CT的CSPH检测方法用于预测HCC患者肝切除术后结果,并证明其优于传统的CSPH标准 | 单中心回顾性研究,样本量有限,可能影响结果的普遍性 | 评估基于CT的CSPH检测对HCC患者肝切除术后预后的预测能力 | 患有晚期慢性肝病(ACLD)并接受肝切除术的HCC患者 | 数字病理学 | 肝细胞癌 | CT扫描,深度学习 | 深度学习 | CT图像 | 593名患者(460名男性;平均年龄57.9±9.3岁) |
926 | 2025-02-17 |
Ischemic Stroke Lesion Core Segmentation from CT Perfusion Scans Using Attention ResUnet Deep Learning
2025-Feb-14, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01407-8
PMID:39953256
|
研究论文 | 本文提出了一种基于深度学习的系统,用于从CT灌注扫描中自动分割缺血性卒中病灶 | 结合边缘增强扩散(EED)滤波和注意力机制的Attention ResUnet架构,用于卒中病灶分割 | 模型在ISLES 2018数据集上的Dice相似系数为59%,仍有提升空间 | 提高缺血性卒中病灶分割的准确性和效率,以优化诊断、预后和治疗计划 | 缺血性卒中病灶 | 计算机视觉 | 心血管疾病 | 深度学习 | Attention ResUnet | CT灌注扫描图像 | ISLES 2018数据集,采用五折交叉验证 |
927 | 2025-02-17 |
Impact of Combined Deep Learning Image Reconstruction and Metal Artifact Reduction Algorithm on CT Image Quality in Different Scanning Conditions for Maxillofacial Region with Metal Implants: A Phantom Study
2025-Feb-14, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01287-4
PMID:39953255
|
研究论文 | 本研究探讨了结合深度学习图像重建(DLIR)和金属伪影减少(MAR)算法在不同扫描条件下对带有金属植入物的CT图像质量的影响 | 结合DLIR和MAR算法在不同剂量水平下对CT图像质量的影响进行了系统评估,并展示了DLIR在减少金属伪影和提高图像质量方面的优势 | 研究基于猪模型,可能无法完全反映人体情况,且样本量较小(四只猪) | 评估DLIR和MAR算法在不同扫描条件下对带有金属植入物的CT图像质量的影响 | 带有金属植入物的猪上颌面部区域CT图像 | 医学影像 | NA | CT扫描、深度学习图像重建(DLIR)、金属伪影减少(MAR) | 深度学习 | CT图像 | 四只猪的上颌面部区域图像 |
928 | 2025-02-17 |
Hybrid Approach to Classifying Histological Subtypes of Non-small Cell Lung Cancer (NSCLC): Combining Radiomics and Deep Learning Features from CT Images
2025-Feb-14, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01442-5
PMID:39953259
|
研究论文 | 本研究旨在开发一种结合放射组学和深度学习特征的混合模型,用于分类非小细胞肺癌(NSCLC)的组织学亚型 | 提出了一种结合放射组学和深度学习特征的混合模型,用于提高NSCLC亚型分类的准确性和可靠性 | 样本量相对较小,外部验证数据集仅包含24名患者 | 提高非小细胞肺癌(NSCLC)组织学亚型分类的准确性和可靠性 | 非小细胞肺癌(NSCLC)患者 | 计算机视觉 | 肺癌 | CT成像 | 混合模型(放射组学+深度学习) | CT图像 | 235名NSCLC患者(内部数据集),24名NSCLC患者(外部验证数据集) |
929 | 2025-02-17 |
Leveraging deep learning for nonlinear shape representation in anatomically parameterized statistical shape models
2025-Feb-14, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03330-3
PMID:39953355
|
研究论文 | 本文提出了一种基于深度学习的解剖参数化统计形状模型(DL-ANATSSM),用于解决传统统计形状模型在形态学评估中的局限性 | 引入解剖参数与骨骼形状信息之间的非线性关系,通过深度学习模型实现更精确和可解释的统计形状模型 | 需要合成数据集进行预训练,且依赖于真实骨骼数据集进行微调 | 改进统计形状模型,使其能够通过临床相关参数直接控制,提高形态学评估的精度和可解释性 | 股骨骨骼 | 计算机视觉 | NA | 深度学习 | 多层感知机(MLP) | 3D骨骼形状数据 | 合成股骨骨骼数据集和真实骨骼数据集 |
930 | 2025-02-17 |
Accelerated Multi-b-Value DWI Using Deep Learning Reconstruction: Image Quality Improvement and Microvascular Invasion Prediction in BCLC Stage A Hepatocellular Carcinoma
2025-Feb-14, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.01.043
PMID:39955255
|
研究论文 | 本研究探讨了加速深度学习多b值扩散加权成像(DL Mb-DWI)在BCLC A期肝细胞癌(HCC)中的采集时间、图像质量和微血管侵犯(MVI)预测能力的影响 | 使用深度学习技术加速多b值扩散加权成像,显著减少采集时间并提高图像质量,同时保持与标准Mb-DWI相当的MVI预测性能 | 研究样本量相对较小(118例患者),且仅针对BCLC A期HCC患者,可能限制了结果的普适性 | 评估加速DL Mb-DWI在HCC患者中的图像质量和MVI预测能力 | BCLC A期肝细胞癌患者 | 医学影像 | 肝细胞癌 | 多b值扩散加权成像(Mb-DWI) | 深度学习模型 | 医学影像数据 | 118例患者 |
931 | 2025-02-17 |
Diagnosis of microbial keratitis using smartphone-captured images; a deep-learning model
2025-Feb-13, Journal of ophthalmic inflammation and infection
IF:2.9Q1
DOI:10.1186/s12348-025-00465-x
PMID:39946047
|
研究论文 | 本研究探讨了使用智能手机拍摄的图像通过深度学习模型诊断和区分微生物性角膜炎(MK)亚型的应用 | 利用智能手机拍摄的图像和深度学习技术进行微生物性角膜炎的诊断,提供了一种快速且适用于资源有限地区的诊断方法 | 研究样本量相对较小,且未涵盖所有可能的MK亚型 | 开发一种快速且准确的微生物性角膜炎诊断方法,特别是在资源有限的地区 | 微生物性角膜炎(MK)及其亚型(细菌性角膜炎、真菌性角膜炎和阿米巴性角膜炎) | 计算机视觉 | 角膜炎 | 深度学习 | 卷积神经网络(CNN) | 图像 | 889例(2020年至2023年收集的细菌性角膜炎、真菌性角膜炎和阿米巴性角膜炎病例) |
932 | 2025-02-17 |
Prediction of InSAR deformation time-series using improved LSTM deep learning model
2025-Feb-13, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-83084-1
PMID:39948371
|
研究论文 | 本研究开发了一种改进的LSTM模型,用于预测InSAR变形时间序列,并在印度Khetri铜带的Mine-A的26个TSX/TDX数据集上进行了验证 | 提出了一种改进的LSTM模型(mLSTM),用于预测InSAR变形时间序列,并在性能上优于传统的RNN和LSTM模型 | 研究仅基于单一参考PSI导出的变形时间序列结果,可能限制了模型的泛化能力 | 开发一种改进的LSTM模型,用于预测矿山开采引起的地表变形时间序列 | 矿山开采引起的地表变形 | 机器学习 | NA | InSAR | LSTM, RNN, mLSTM | 时间序列数据 | 26个TSX/TDX数据集 |
933 | 2025-02-17 |
Unraveling microglial spatial organization in the developing human brain with DeepCellMap, a deep learning approach coupled with spatial statistics
2025-Feb-13, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-56560-z
PMID:39948387
|
研究论文 | 本文介绍了DeepCellMap,一种结合深度学习与空间统计的工具,用于映射发育中人类大脑的小胶质细胞空间组织 | DeepCellMap整合了多尺度图像处理与先进的空间和聚类统计,能够映射正常和病理状态下的大脑发育中的小胶质细胞组织,并揭示了小胶质细胞与血管之间的关联 | NA | 研究发育中人类大脑的小胶质细胞空间组织及其在病理状态下的变化 | 发育中的人类大脑中的小胶质细胞 | 数字病理学 | NA | 深度学习,空间统计 | 深度学习模型 | 图像 | NA |
934 | 2025-02-17 |
Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review
2025-Feb-13, BMC medical informatics and decision making
IF:3.3Q2
DOI:10.1186/s12911-025-02870-7
PMID:39948530
|
系统综述 | 本文系统综述了数字健康技术(DHTs)和人工智能(AI)算法在慢性阻塞性肺疾病(COPD)管理中的应用 | 本文首次系统性地总结了DHTs和AI算法在COPD管理中的应用,并识别了关键应用领域 | 研究仅纳入了截至2024年12月发表的研究,可能未涵盖最新的研究成果 | 探讨DHTs和AI算法在COPD管理中的应用,包括数据收集、分析算法及关键应用领域 | 慢性阻塞性肺疾病(COPD)患者 | 数字病理学 | 慢性阻塞性肺疾病 | 机器学习(ML)、深度学习(DL) | 支持向量机、提升算法、深度神经网络(DNN)、卷积神经网络(CNN) | 临床数据、患者报告结果、环境/生活方式数据 | 41项研究 |
935 | 2025-02-17 |
Robust CRW crops leaf disease detection and classification in agriculture using hybrid deep learning models
2025-Feb-13, Plant methods
IF:4.7Q1
DOI:10.1186/s13007-025-01332-5
PMID:39948565
|
研究论文 | 本文提出了一种用于玉米、水稻和小麦作物病害检测的Slender-CNN模型,通过整合不同维度的并行卷积层来准确识别多尺度病变 | 设计了Slender-CNN模型,能够同时处理多种作物的病害检测,并在资源有限的环境中表现出色 | 模型在特定作物上的准确率仍有提升空间,且未涉及其他作物或更广泛的病害类型 | 开发一种适用于多种作物的病害检测模型,以解决农民资源有限和数字素养低的问题 | 玉米、水稻和小麦作物的病害检测 | 计算机视觉 | 植物病害 | 深度学习 | Slender-CNN | 图像 | 未明确说明样本数量,但涉及玉米、水稻和小麦作物的健康与感染类别 |
936 | 2025-02-17 |
Automated detection and quantification of aortic calcification in coronary CT angiography using deep learning: A comparative study of manual and automated scoring methods
2025-Feb-10, Journal of cardiovascular computed tomography
IF:5.5Q1
DOI:10.1016/j.jcct.2025.02.003
PMID:39955204
|
研究论文 | 本研究评估了一种深度学习模型,用于自动化检测和量化冠状动脉CT血管造影(CTA)图像中的主动脉钙化,并与手动评估方法进行比较 | 首次使用深度学习模型自动化检测和量化主动脉钙化,并与传统手动方法进行对比验证 | 研究样本量有限,仅包含670名参与者,且未探讨模型在其他数据集上的泛化能力 | 评估深度学习模型在自动化检测和量化主动脉钙化中的可靠性,并比较其与手动方法在预测主要不良心血管事件(MACE)中的效果 | 冠状动脉CT血管造影(CTA)图像中的主动脉钙化 | 计算机视觉 | 心血管疾病 | 深度学习 | 深度学习模型 | 图像 | 670名参与者(来自CORE320和CORE64研究) |
937 | 2025-02-17 |
Advancing Pancreatic Cancer Prediction with a Next Visit Token Prediction Head on Top of Med-BERT
2025-Feb-04, Cancers
IF:4.5Q1
DOI:10.3390/cancers17030516
PMID:39941883
|
研究论文 | 本文提出了一种基于Med-BERT的胰腺癌预测方法,通过将疾病预测任务重新表述为令牌预测任务和下一次访问掩码令牌预测任务,以提高胰腺癌预测的准确性 | 将疾病预测任务重新表述为令牌预测任务和下一次访问掩码令牌预测任务,以更好地利用Med-BERT的预训练任务格式,从而在少量数据和完全监督设置下提高预测准确性 | 研究主要关注胰腺癌,未涉及其他类型的癌症或疾病 | 提高胰腺癌预测的准确性,尤其是在少量数据的情况下 | 电子健康记录(EHRs)中的胰腺癌预测 | 自然语言处理 | 胰腺癌 | Med-BERT | Med-BERT-Sum, Med-BERT-Mask | 电子健康记录(EHRs) | 10到500个样本 |
938 | 2025-02-17 |
Development of Nipple Trauma Evaluation System With Deep Learning
2025-Feb, Journal of human lactation : official journal of International Lactation Consultant Association
IF:2.1Q2
DOI:10.1177/08903344241303867
PMID:39718190
|
研究论文 | 本研究旨在开发一种基于深度学习的乳头创伤评估系统,以支持母乳喂养 | 首次将深度学习技术应用于母乳喂养支持领域,开发了自动检测和分类乳头创伤的系统 | 研究中未提及样本的多样性或模型的泛化能力,可能限制了系统的广泛应用 | 开发一种能够自动检测和分类乳头创伤的深度学习系统 | 乳头创伤图像 | 计算机视觉 | NA | 深度学习 | 对象检测和分类模型 | 图像 | 753张图像 |
939 | 2025-02-17 |
Artificial intelligence-enhanced comprehensive assessment of the aortic valve stenosis continuum in echocardiography
2025-Feb, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2025.105560
PMID:39842286
|
研究论文 | 本文开发并验证了一种基于人工智能的系统,用于评估主动脉瓣狭窄(AS),该系统在资源有限和先进的环境中均有效 | 开发了一种双路径AI系统,结合深度学习算法和自动化传统AS评估,提高了AS诊断的准确性和预后价值 | 需要进一步验证研究以确认其在不同环境中的有效性 | 评估主动脉瓣狭窄(AS)的连续体,并开发一种适用于各种临床环境的AI系统 | 主动脉瓣狭窄(AS)患者 | 数字病理学 | 心血管疾病 | 深度学习(DL) | 深度学习算法 | 2D TTE视频 | 开发数据集(n=8427),内部测试数据集(n=841),外部验证数据集(n=1696和n=772) |
940 | 2025-02-17 |
MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning
2025-Feb, Annals of the New York Academy of Sciences
IF:4.1Q1
DOI:10.1111/nyas.15288
PMID:39844431
|
研究论文 | 本文提出了一种名为MI-Mamba的混合模型,结合了卷积神经网络(CNN)和Mamba模型,用于解码运动想象(MI)脑电图(EEG)数据 | MI-Mamba模型通过结合CNN和Mamba模型,解决了现有EEG解码模型在长序列数据处理上的局限性,并在减少参数数量的同时提高了分类准确率 | 尽管MI-Mamba在减少参数数量和提升准确率方面表现出色,但其在更广泛EEG解码任务中的普适性仍需进一步验证 | 研究目的是开发一种新的EEG解码模型,以提高运动想象(MI)任务的分类准确率和计算效率 | 研究对象为运动想象(MI)任务中的多通道EEG信号 | 脑机接口 | NA | 深度学习 | CNN, Mamba | EEG信号 | 两个公开的MI数据集(BCI Competition IV 2a和2b数据集) |