本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1061 | 2025-10-07 |
Achieving high accuracy in meniscus tear detection using advanced deep learning models with a relatively small data set
2025-Feb, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
DOI:10.1002/ksa.12369
PMID:39015056
|
研究论文 | 本研究评估了YOLOv8和EfficientNetV2深度学习模型在相对小规模数据集上检测半月板撕裂的有效性 | 在相对小规模数据集(642个膝盖)上结合YOLOv8和EfficientNetV2模型实现高精度的半月板定位和撕裂检测 | 数据集规模相对较小,证据等级为III级 | 评估先进深度学习模型在MRI图像中检测半月板撕裂的性能 | 642个膝盖的MRI研究图像 | 计算机视觉 | 骨科疾病 | 磁共振成像(MRI) | CNN | 医学图像 | 642个膝盖的MRI扫描 | NA | YOLOv8, EfficientNetV2 | mAP@50, AUC | NA |
| 1062 | 2025-10-07 |
Multiparametric ultrasound evaluation of thyroid nodules
2025-Feb, Ultraschall in der Medizin (Stuttgart, Germany : 1980)
DOI:10.1055/a-2329-2866
PMID:39242086
|
综述 | 本文探讨多参数超声评估在甲状腺结节诊断中的应用价值及挑战 | 系统整合超声弹性成像、超声造影与人工智能技术,提出多参数超声评估体系 | 缺乏标准化TIRADS系统,超声弹性成像临床应用标准不统一,AI技术整合临床流程存在挑战 | 优化甲状腺结节诊断流程,减少不必要的有创操作 | 甲状腺结节患者 | 医学影像 | 甲状腺疾病 | 多参数超声评估(包括超声弹性成像、超声造影) | 机器学习,深度学习 | 超声影像 | NA | NA | NA | NA | NA |
| 1063 | 2025-10-07 |
Deep Learning Model of Diastolic Dysfunction Risk Stratifies the Progression of Early-Stage Aortic Stenosis
2025-Feb, JACC. Cardiovascular imaging
DOI:10.1016/j.jcmg.2024.07.017
PMID:39297852
|
研究论文 | 本研究利用深度学习模型评估舒张功能障碍,对早期主动脉瓣狭窄的进展风险进行分层预测 | 首次将已验证的基于超声心动图的深度学习舒张功能障碍评估模型应用于主动脉瓣狭窄进展的风险分层 | 样本量相对有限,需要在更大队列中进一步验证 | 研究深度学习评估舒张功能障碍能否识别主动脉瓣狭窄发展和进展的潜在风险 | 主动脉瓣硬化患者和轻度至中度主动脉瓣狭窄患者 | 数字病理 | 心血管疾病 | 超声心动图, 心脏磁共振成像, PET/CT成像 | 深度学习 | 医学影像 | ARIC队列898名参与者 + CMR队列50名患者 + PET/CT队列18名患者 | NA | NA | C-index, 风险比, 相关系数 | NA |
| 1064 | 2025-10-07 |
Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities
2025-Feb, Japanese journal of radiology
IF:2.9Q2
DOI:10.1007/s11604-024-01666-5
PMID:39316286
|
研究论文 | 通过深度学习重建加速FLAIR成像,评估其在白质高信号评估中的潜力 | 使用深度学习从欠采样数据重建FLAIR图像,显著缩短扫描时间同时保持图像质量 | 样本量较小(仅30名患者),需更大规模研究验证 | 评估深度学习重建FLAIR图像在白质高信号评估中的可行性和效果 | 30名白质高信号患者 | 医学影像分析 | 白质高信号相关疾病 | 磁共振FLAIR成像,深度学习重建 | 深度学习模型 | 医学影像数据 | 30名患者,100个高信号病灶子集 | NA | NA | SSIM, 区域SSIM, NRMSE, 区域NRMSE, 图像质量评分 | NA |
| 1065 | 2025-10-07 |
Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures
2025-Feb, Photoacoustics
IF:7.1Q1
DOI:10.1016/j.pacs.2024.100674
PMID:39758833
|
研究论文 | 本研究系统评估了多种基于编码器-解码器的CNN架构在实时LED光声成像中提升信噪比的性能 | 首次系统比较多种U-Net变体在LED-PA图像去噪中的表现,发现Dense U-Net对不同噪声分布具有最佳鲁棒性 | 研究缺乏对更多样化数据集的验证,且未涉及临床人体数据 | 提升LED光声成像系统的信噪比性能 | 仿体、小鼠器官和肿瘤 | 计算机视觉 | 肿瘤 | 光声成像 | CNN | 图像 | NA | NA | 卷积自编码器,U-Net,Dense U-Net,R2 U-Net | 信噪比 | NA |
| 1066 | 2025-10-07 |
Deep learning model for automatic detection of different types of microaneurysms in diabetic retinopathy
2025-Feb, Eye (London, England)
DOI:10.1038/s41433-024-03585-1
PMID:39789187
|
研究论文 | 开发基于深度学习的软件,用于在非增殖性糖尿病视网膜病变患者的结构光学相干断层扫描图像中自动检测和区分低反射与高反射微动脉瘤 | 首次使用深度学习模型在结构OCT图像中自动检测并分类不同类型的微动脉瘤(低反射与高反射) | 自动化方法与人工标注的差异主要源于算法将正常视网膜血管误判为微动脉瘤 | 开发能够自动检测和分类糖尿病视网膜病变中微动脉瘤的深度学习软件 | 非增殖性糖尿病视网膜病变患者的结构OCT图像 | 计算机视觉 | 糖尿病视网膜病变 | 结构光学相干断层扫描 | YOLO, DETR | 图像 | 249名患者(498只眼睛) | NA | YOLO, DETR | AUC | NA |
| 1067 | 2025-10-07 |
Machine learning-based prediction model integrating ultrasound scores and clinical features for the progression to rheumatoid arthritis in patients with undifferentiated arthritis
2025-Feb, Clinical rheumatology
IF:2.9Q2
DOI:10.1007/s10067-025-07304-3
PMID:39789318
|
研究论文 | 本研究开发了一种整合超声评分和临床特征的机器学习模型,用于预测未分化关节炎患者向类风湿关节炎的进展 | 首次将18关节超声评分系统(US18)与临床数据整合到机器学习模型中,用于预测未分化关节炎向类风湿关节炎的进展 | 研究样本量相对有限(432例),随访时间仅为1年,需要更大规模和更长随访期的验证 | 提高未分化关节炎患者向类风湿关节炎进展的早期预测准确性,支持个性化治疗策略 | 432例未分化关节炎患者 | 机器学习 | 类风湿关节炎 | 超声检查,18关节超声评分系统(US18) | 随机森林, 深度学习模型 | 临床特征数据,超声评分数据 | 432例未分化关节炎患者(152例进展为RA,280例未进展) | NA | 随机森林,四种机器学习算法和一种深度学习模型 | 准确率,敏感性 | NA |
| 1068 | 2025-10-07 |
Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database
2025-Feb, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooae158
PMID:39764170
|
研究论文 | 开发了一种名为PreEMPT-ECMO的分层深度学习模型,用于连续预测体外膜肺氧合(ECMO)使用风险 | 首次整合静态和多粒度时间序列特征,开发了能够连续预测ECMO使用风险的分层深度学习模型 | 需要在前瞻性研究和非COVID-19难治性呼吸衰竭中进行进一步验证和泛化 | 开发ECMO风险预测模型以改善患者分诊和资源分配 | COVID-19患者中的ECMO使用情况 | 机器学习 | COVID-19 | 深度学习 | 分层深度学习模型 | 多模态数据,包括静态特征和时间序列特征 | 101,400名患者,其中1,298名(1.28%)接受ECMO支持 | NA | 分层深度学习架构 | 准确率, 精确率 | NA |
| 1069 | 2025-10-07 |
AI-based methods for biomolecular structure modeling for Cryo-EM
2025-Feb, Current opinion in structural biology
IF:6.1Q1
DOI:10.1016/j.sbi.2025.102989
PMID:39864242
|
综述 | 本文综述了基于人工智能的冷冻电镜生物分子结构建模方法 | 总结了深度学习等人工智能技术在冷冻电镜数据处理关键步骤中的最新应用进展 | NA | 探讨人工智能技术在冷冻电镜数据处理中的应用 | 生物大分子结构 | 结构生物学 | NA | 冷冻电镜(Cryo-EM) | 深度学习 | 投影图像 | NA | NA | NA | NA | NA |
| 1070 | 2025-10-07 |
Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits
2025-Feb, Magma (New York, N.Y.)
DOI:10.1007/s10334-024-01200-8
PMID:39212832
|
研究论文 | 比较压缩感知和CIRIM深度学习模型在12倍加速3D FLAIR MRI重建中的图像质量和重建效率 | 首次在神经功能缺损患者中系统比较压缩感知与CIRIM深度学习模型在高加速因子MRI重建中的性能 | 前瞻性加速临床扫描缺乏真实数据作为金标准,需依赖公开数据集进行加速因子影响评估 | 评估深度学习模型在加速MRI重建中的图像质量和计算效率 | 62例神经功能缺损患者的3D T2-FLAIR MRI图像 | 医学影像分析 | 神经功能缺损 | 3T MRI, 压缩感知, 深度学习重建 | CIRIM | 3D MRI图像 | 62例患者临床数据 + 451例FastMRI数据库公开数据 | NA | Cascades of Independently Recurrent Inference Machines | SSIM, 信噪比, 对比度比率, 重建时间 | NA |
| 1071 | 2025-10-07 |
GBM-Reservoir: Brain tumor (Glioblastoma Multiforme) MRI dataset collection with ground truth segmentation masks
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111287
PMID:39911270
|
研究论文 | 介绍一个包含23,049个样本的脑肿瘤MRI数据集GBM-Reservoir,包含四种MRI扫描类型和分割掩码 | 通过配准过程将原始438个样本扩展至23,049个样本,提供原始和处理后两种分割掩码,特别优化合成样本以简化解释和网络训练 | 图像质量存在异质性,源于不同机构和成像协议的差异 | 为脑肿瘤分割算法开发提供高质量数据集 | 脑胶质母细胞瘤(GBM)MRI图像 | 数字病理 | 脑肿瘤 | MRI(FLAIR, T1, T1ce, T2) | NA | 医学图像 | 23,049个样本(源自BraTS 2022挑战赛的438个原始样本通过配准扩展) | NA | NA | NA | NA |
| 1072 | 2025-10-07 |
Refining the prediction of user satisfaction on chat-based AI applications with unsupervised filtering of rating text inconsistencies
2025-Feb, Royal Society open science
IF:2.9Q1
DOI:10.1098/rsos.241687
PMID:39911884
|
研究论文 | 提出一种通过无监督过滤评分文本不一致性来优化聊天AI应用用户满意度预测的框架 | 采用多无监督情感分析多数投票机制过滤评分与内容不一致的评论数据 | NA | 提升聊天AI应用用户满意度的预测性能以改进服务质量 | Google Play商店中聊天AI应用的用户评论数据 | 自然语言处理 | NA | 情感分析 | 机器学习,深度学习 | 文本 | NA | NA | NA | 预测准确率 | NA |
| 1073 | 2025-10-07 |
Image reconstruction of electromagnetic tomography based on generative adversarial network with spectral normalization and improved dung beetle optimization algorithm
2025-Feb-01, The Review of scientific instruments
DOI:10.1063/5.0233552
PMID:39912879
|
研究论文 | 提出基于生成对抗网络的电磁层析成像图像重建方法STDBOGAN,通过谱归一化、双时间尺度更新规则和改进蜣螂优化算法提升重建质量 | 结合谱归一化和双时间尺度更新规则稳定训练过程,采用改进蜣螂优化算法自动调整网络超参数 | NA | 解决电磁层析成像图像重建的非线性和不适定问题,提高重建图像质量 | 电磁层析成像图像 | 计算机视觉 | NA | 电磁层析成像 | GAN | 图像 | 通过仿真软件建立的数据集 | NA | STDBOGAN, UNet3+, DeepLabv3+, PSPNet, Segmenter, SegRefiner | 重建精度、抗噪声能力、泛化能力 | NA |
| 1074 | 2024-10-18 |
Radiomics-Based Prediction of Patient Demographic Characteristics on Chest Radiographs: Looking Beyond Deep Learning for Risk of Bias
2025-Feb-05, AJR. American journal of roentgenology
DOI:10.2214/AJR.24.31963
PMID:39413236
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1075 | 2024-12-21 |
Correction to: A review of multimodal deep learning methods for genomic-enabled prediction in plant breeding
2025-Feb-05, Genetics
IF:3.3Q2
DOI:10.1093/genetics/iyae200
PMID:39704758
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1076 | 2025-10-07 |
Advanced Quantitative Phase Microscopy Achieved with Spatial Multiplexing and a Metasurface
2025-Feb-05, Nano letters
IF:9.6Q1
DOI:10.1021/acs.nanolett.4c06039
PMID:39838821
|
研究论文 | 提出一种结合超表面光学和深度学习的单次曝光定量相位成像方法 | 通过空间复用超表面光学与强度传输方程结合深度学习,实现高速单次曝光的定量相位成像 | 仅作为概念验证展示,尚未在大规模实际应用中验证 | 开发高速定量相位成像技术以替代传统多曝光相位成像方法 | 校准相位物体和生物样本 | 计算成像 | NA | 定量相位显微镜,强度传输方程 | 神经网络 | 光学相位图像 | NA | NA | 匹配神经网络 | 5%误差,空间带宽积提升 | NA |
| 1077 | 2025-10-07 |
Syn2Real: synthesis of CT image ring artifacts for deep learning-based correction
2025-Feb-05, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/adad2c
PMID:39842097
|
研究论文 | 开发了一种在图像域合成CT环形伪影的新方法,用于深度学习校正 | 提出直接在图像域合成逼真环形伪影的数据生成方法,无需依赖特定成像系统物理特性 | NA | 开发可扩展的训练数据生成技术,用于基于深度学习的CT环形伪影校正 | CT图像中的环形伪影 | 计算机视觉 | NA | CT成像 | UNet, UNet++, 扩散模型 | CT图像 | NA | NA | UNet, UNet++ | NA | NA |
| 1078 | 2025-10-07 |
Large Language Models (such as ChatGPT) as Tools for Machine Learning-Based Data Insights in Analytical Chemistry
2025-Feb-05, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c05046
PMID:39907023
|
研究论文 | 本文探讨了大型语言模型(如ChatGPT)作为分析化学中机器学习数据洞察工具的应用 | 首次展示了通过智能手机使用LLM以交互对话方式对激光诱导击穿光谱高光谱成像数据集进行多元数据分析 | NA | 探索大型语言模型在分析化学数据处理和分析中的应用潜力 | 激光诱导击穿光谱高光谱成像数据集 | 自然语言处理 | NA | 激光诱导击穿光谱,高光谱成像 | 大型语言模型 | 光谱数据,高光谱图像 | NA | NA | ChatGPT | NA | 智能手机 |
| 1079 | 2025-10-07 |
Class-aware multi-level attention learning for semi-supervised breast cancer diagnosis under imbalanced label distribution
2025-Feb-05, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03291-4
PMID:39907850
|
研究论文 | 提出一种面向半监督乳腺癌诊断的类感知多级注意力学习模型,解决标注数据稀缺和类别不平衡问题 | 开发了多级融合注意力学习模块和类感知自适应伪标签模块,能够精确识别病变关键区域并平衡类别学习过程 | 仅在BACH数据集上验证,需要进一步临床验证 | 开发半监督乳腺癌诊断方法以减少对大量标注数据的依赖 | 乳腺癌显微图像 | 计算机视觉 | 乳腺癌 | 深度学习 | 注意力机制,伪标签学习 | 图像 | BACH数据集,仅使用40%标注的显微数据 | NA | 多级融合注意力模块,类感知自适应伪标签模块 | 准确率 | NA |
| 1080 | 2025-10-07 |
Speech Technology for Automatic Recognition and Assessment of Dysarthric Speech: An Overview
2025-Feb-04, Journal of speech, language, and hearing research : JSLHR
DOI:10.1044/2024_JSLHR-23-00740
PMID:39813019
|
综述 | 本文系统回顾了构音障碍语音识别与评估领域的最新研究进展 | 整合了构音障碍语音研究的多个关键技术方向,包括语音数据库、声学分析、可懂度评估和自动语音识别,并重点探讨了深度学习在该领域的应用前景 | 未涉及伦理委员会或机构审查委员会的审批流程 | 改善构音障碍患者的生活质量,开发包容性对话接口 | 构音障碍语音及相关语音技术 | 自然语言处理 | 构音障碍 | 语音处理技术 | 深度学习神经网络 | 语音数据 | NA | NA | NA | NA | NA |