本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1141 | 2025-02-07 |
Advancing Optical Coherence Tomography Diagnostic Capabilities: Machine Learning Approaches to Detect Autoimmune Inflammatory Diseases
2025-Feb-06, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
IF:2.0Q2
DOI:10.1097/WNO.0000000000002322
PMID:39910704
|
研究论文 | 本研究探讨了利用机器学习模型通过光学相干断层扫描(OCT)图像区分不同自身免疫性炎症疾病的可行性 | 首次使用机器学习模型结合OCT图像特征,区分多种自身免疫性炎症疾病、其他眼部疾病及健康对照 | 样本量相对较小,特别是其他眼部疾病组(n=16),且MS与NMOSD的区分准确率较低(0.53) | 评估机器学习模型在基于OCT测量的自身免疫性炎症疾病诊断中的可行性 | 多发性硬化症(MS)、视神经脊髓炎谱系疾病(NMOSD)、髓鞘少突胶质细胞糖蛋白抗体相关疾病(MOGAD)患者、其他眼部疾病患者及健康对照 | 数字病理学 | 自身免疫性炎症疾病 | 光学相干断层扫描(OCT) | 支持向量机(SVM) | 图像 | MS患者99人,NMOSD患者40人,MOGAD患者74人,其他眼部疾病患者16人,健康对照54人 |
1142 | 2025-02-07 |
Automating Prostate Cancer Grading: A Novel Deep Learning Framework for Automatic Prostate Cancer Grade Assessment using Classification and Segmentation
2025-Feb-06, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01429-2
PMID:39913023
|
研究论文 | 本文介绍了一种基于深度学习的三阶段框架,用于自动评估前列腺癌的严重程度,通过分类和分割技术提高诊断精度 | 提出了一种创新的深度学习系统,结合了分类、分割和ISUP等级计算,使用Self-ONN增强的DeepLabV3架构优化了分割性能 | 需要进一步研究以评估该框架在不同临床场景中的适应性和有效性 | 开发自动化系统以提高前列腺癌分级的诊断精度并减少人为错误 | 前列腺癌组织样本 | 数字病理学 | 前列腺癌 | 深度学习 | DNN, DeepLabV3, EfficientNet, RandomForest | 图像 | 2699例前列腺癌组织样本 |
1143 | 2025-02-07 |
PlaqueViT: a vision transformer model for fully automatic vessel and plaque segmentation in coronary computed tomography angiography
2025-Feb-05, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11410-w
PMID:39909898
|
研究论文 | 开发并评估了一种用于冠状动脉血管和斑块分割的深度学习模型 | 提出了一种基于3D视觉Transformer的深度学习模型PlaqueViT,用于全自动分割冠状动脉斑块和血管 | 模型在外部验证数据集上的表现未明确提及 | 开发一种用于冠状动脉CT血管造影(CCTA)中冠状动脉血管和斑块分割的深度学习模型 | 冠状动脉血管和斑块 | 计算机视觉 | 心血管疾病 | 深度学习 | 3D视觉Transformer | 图像 | 模型开发(n=463)、测试(n=123)、观察者间研究(n=65)、外部验证(n=28)、CAD检测(n=684) |
1144 | 2025-02-07 |
Automatic Identification of Fetal Abdominal Planes from Ultrasound Images Based on Deep Learning
2025-Feb-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01409-6
PMID:39909994
|
研究论文 | 本研究探讨了人工智能架构在自动识别胎儿腹部标准扫描平面和结构中的潜力,特别是腹围的测量 | 首次将深度学习神经网络应用于胎儿腹部超声图像的自动识别,特别是使用MobileNet3Large和EfficientV2S模型 | 数据集分布非正态,需要进一步研究以比较这些AI模型与传统方法的整体性能 | 探索人工智能在自动识别胎儿腹部标准扫描平面和结构中的应用 | 胎儿腹部超声图像 | 计算机视觉 | NA | 深度学习 | Xception, MobileNetV3Large, EfficientV2S | 图像 | 包含九个类别的超声图像数据集 |
1145 | 2025-02-07 |
VisionMD: an open-source tool for video-based analysis of motor function in movement disorders
2025-Feb-04, NPJ Parkinson's disease
DOI:10.1038/s41531-025-00876-6
PMID:39900649
|
研究论文 | 本文介绍了VisionMD,一个用于自动化视频分析的开源软件,旨在评估帕金森病和其他运动障碍患者的运动功能 | VisionMD利用深度学习技术追踪身体运动,计算运动学特征以量化症状严重程度,并支持纵向监测,提供了一个精确、客观且可扩展的评估工具 | 未提及具体局限性 | 开发一个用户友好且可定制的框架,使临床医生和研究人员能够客观评估运动障碍患者的运动症状,而无需专用硬件 | 帕金森病和其他运动障碍患者的运动功能 | 计算机视觉 | 帕金森病 | 深度学习 | NA | 视频 | NA |
1146 | 2025-02-07 |
Annotation-free deep learning for predicting gene mutations from whole slide images of acute myeloid leukemia
2025-Feb-03, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00804-0
PMID:39900774
|
研究论文 | 本文提出了一种基于多实例学习(MIL)和集成技术的深度学习模型,用于从急性髓性白血病(AML)的全切片图像(WSIs)中预测基因突变 | 该模型无需补丁级或细胞级注释即可预测NPM1和FLT3-ITD基因突变,且在572个WSIs的数据集上表现出色 | 尽管模型在预测基因突变方面表现出色,但仍依赖于图像分辨率和手动注释的挑战 | 研究目的是通过深度学习模型从AML的WSIs中预测基因突变 | 急性髓性白血病(AML)的全切片图像(WSIs) | 数字病理学 | 急性髓性白血病 | 深度学习 | 多实例学习(MIL) | 图像 | 572个全切片图像(WSIs) |
1147 | 2025-02-07 |
A novel early stage drip irrigation system cost estimation model based on management and environmental variables
2025-Feb-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-88446-x
PMID:39900997
|
研究论文 | 本研究旨在通过环境和管理变量建立一个早期滴灌系统成本估算模型 | 使用多种特征选择算法和机器学习模型来估算滴灌系统的成本,并确定了最佳的特征选择技术和模型 | 研究依赖于515个项目的数据库,可能无法完全代表所有滴灌系统的成本情况 | 估算早期滴灌系统的成本 | 515个滴灌系统项目 | 机器学习 | NA | 多种特征选择算法(如WCC、LCA、GA、PSO、ACO、ICA、LA、HTS、FOA、DSOS、CUK)和机器学习模型(如多元线性回归、支持向量回归、人工神经网络、基因表达式编程、遗传算法、深度学习、决策树) | 支持向量机(SVM)、人工神经网络(ANN) | 结构化数据 | 515个滴灌系统项目 |
1148 | 2025-02-07 |
AI-driven video summarization for optimizing content retrieval and management through deep learning techniques
2025-Feb-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-87824-9
PMID:39901035
|
研究论文 | 本研究提出了一种基于深度学习的AI驱动视频摘要方法,用于优化大型异构媒体档案中的内容检索和管理 | 结合卷积神经网络(CNN)和长短期记忆网络(LSTM)提取帧级和时序视频特征,并集成ResNet50增强内容表示,采用双帧视频流提升系统性能 | 未提及具体的数据集规模限制或模型泛化能力的详细评估 | 解决大型异构媒体档案中视频内容的组织和检索挑战,提升在线视频数量和质量的需求 | 视频内容 | 计算机视觉 | NA | 深度学习 | CNN, LSTM, ResNet50 | 视频 | YouTube, EPFL, TVSum数据集 |
1149 | 2025-02-07 |
Meso Hybridized Silk Fibroin Watchband for Wearable Biopotential Sensing and AI Gesture Signaling
2025-Feb, Advanced science (Weinheim, Baden-Wurttemberg, Germany)
DOI:10.1002/advs.202410702
PMID:39660568
|
研究论文 | 本文介绍了一种智能且灵活的表带,用于可穿戴生物电位传感和AI手势信号识别 | 结合了基于Mo-Au丝网的微型柔性电极阵列和介观杂交丝素蛋白薄膜,实现了高信噪比、高灵敏度和显著的运动噪声减少 | NA | 开发一种用于生物电位传感和手势识别的智能表带 | 人类生物电位信号和肌肉动作 | 可穿戴技术 | NA | 深度学习 | NA | 生物电位信号 | 20名不同性别的志愿者 |
1150 | 2025-02-07 |
Enhancing signal-to-noise ratio in real-time LED-based photoacoustic imaging: A comparative study of CNN-based deep learning architectures
2025-Feb, Photoacoustics
IF:7.1Q1
DOI:10.1016/j.pacs.2024.100674
PMID:39758833
|
研究论文 | 本研究系统评估了多种基于编码器-解码器的CNN架构在实时LED光声成像中提高信噪比的效果 | 首次系统评估了不同深度学习方法在LED光声成像中的去噪效果,并比较了多种U-Net变体的性能 | 研究未涉及人体样本,且未评估模型在临床环境中的实际应用效果 | 提高LED光声成像中的信噪比 | 模型、幻影、小鼠器官和肿瘤 | 计算机视觉 | NA | 光声成像 | CNN、U-Net、Dense U-Net、R2 U-Net | 图像 | 幻影、小鼠器官和肿瘤 |
1151 | 2025-02-07 |
AI-based methods for biomolecular structure modeling for Cryo-EM
2025-Feb, Current opinion in structural biology
IF:6.1Q1
DOI:10.1016/j.sbi.2025.102989
PMID:39864242
|
综述 | 本文综述了基于人工智能的冷冻电镜数据处理技术,特别是大分子结构建模和异质性分析方面的最新进展 | 讨论了深度学习等人工智能技术在冷冻电镜数据处理中的最新应用,显著提升了处理性能 | NA | 探讨人工智能在冷冻电镜数据处理中的应用,特别是大分子结构建模和异质性分析 | 冷冻电镜数据 | 结构生物学 | NA | 冷冻电镜(Cryo-EM) | 深度学习 | 图像 | NA |
1152 | 2025-02-07 |
Image reconstruction of electromagnetic tomography based on generative adversarial network with spectral normalization and improved dung beetle optimization algorithm
2025-Feb-01, The Review of scientific instruments
DOI:10.1063/5.0233552
PMID:39912879
|
研究论文 | 本文提出了一种基于生成对抗网络的深度学习模型STDBOGAN,用于改进电磁断层成像(EMT)的图像重建质量 | STDBOGAN模型引入了谱归一化和双时间尺度更新规则以稳定训练过程,并采用改进的蜣螂优化算法自动调整网络超参数,提高了图像重建的准确性 | NA | 改进电磁断层成像(EMT)的图像重建质量,解决其高度非线性和不适定问题 | 电磁断层成像(EMT)的图像重建 | 计算机视觉 | NA | 深度学习 | 生成对抗网络(GAN) | 图像 | 通过仿真软件建立的数据集 |
1153 | 2025-02-06 |
Advanced Quantitative Phase Microscopy Achieved with Spatial Multiplexing and a Metasurface
2025-Feb-05, Nano letters
IF:9.6Q1
DOI:10.1021/acs.nanolett.4c06039
PMID:39838821
|
研究论文 | 本文提出了一种结合超表面光学和深度学习技术的单次定量相位成像方法,以提高测量速度并减少检测噪声 | 结合超表面光学和深度学习技术,实现单次定量相位成像,显著提高测量速度和空间带宽积 | 需要进一步验证在更多生物样本和实际应用中的性能 | 提高定量相位成像的测量速度和精度 | 校准相位物体和生物样本 | 计算机视觉 | NA | 深度学习,超表面光学 | 神经网络 | 图像 | 校准相位物体和生物样本 |
1154 | 2025-02-06 |
Segmentation of cortical bone, trabecular bone, and medullary pores from micro-CT images using 2D and 3D deep learning models
2025-Feb-05, Anatomical record (Hoboken, N.J. : 2007)
DOI:10.1002/ar.25633
PMID:39905914
|
研究论文 | 本文提出了一种使用2D和3D深度学习模型从微CT图像中分割皮质骨、松质骨和髓腔孔隙的方法 | 开发了名为BONe的新模型,旨在快速准确地进行骨分割,并比较了2D和3D模型的性能 | 3D模型的计算成本高,限制了其可扩展性和实用性 | 实现从微CT图像中自动分割皮质骨、松质骨和髓腔孔隙 | 水獭长骨的微CT扫描图像 | 计算机视觉 | NA | 微CT扫描 | CNN | 图像 | NA |
1155 | 2025-02-06 |
Class-aware multi-level attention learning for semi-supervised breast cancer diagnosis under imbalanced label distribution
2025-Feb-05, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03291-4
PMID:39907850
|
研究论文 | 本文提出了一种面向半监督乳腺癌诊断的类感知多级注意力学习模型,旨在减少对大量数据标注的依赖,并通过多级融合注意力学习模块和类感知自适应伪标签模块提高诊断准确性和平衡学习过程 | 提出了类感知多级注意力学习模型,结合多级融合注意力学习模块和类感知自适应伪标签模块,有效解决了现有乳腺癌诊断模型在数据标注依赖、特征提取和类别不平衡方面的局限性 | 实验仅在BACH数据集上进行验证,未在其他数据集或实际临床环境中测试其泛化能力 | 开发一种半监督乳腺癌诊断模型,减少对大量标注数据的依赖并提高诊断准确性 | 乳腺癌图像数据 | 计算机视觉 | 乳腺癌 | 深度学习 | 类感知多级注意力学习模型 | 图像 | BACH数据集中的显微图像数据,仅使用40%的标注数据 |
1156 | 2025-02-06 |
Spatio-temporal transformers for decoding neural movement control
2025-Feb-04, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/adaef0
PMID:39870043
|
研究论文 | 本文介绍了一种新型的专门用于分析单神经元放电活动的transformer架构,用于解码神经运动控制 | 提出了一种新型的transformer架构,能够在低数据情况下高效且可解释地分析神经活动,并能够早期预测运动方向和是否生成运动 | 模型仅在非人类灵长类动物的背侧前运动皮层多电极记录数据上进行了测试,尚未在人类数据上验证 | 研究神经运动控制的解码方法 | 非人类灵长类动物的背侧前运动皮层 | 机器学习 | NA | 多电极记录 | transformer | 神经生理数据 | 非人类灵长类动物的多电极记录数据 |
1157 | 2025-02-06 |
High-resolution deep learning reconstruction for coronary CTA: compared efficacy of stenosis evaluation with other methods at in vitro and in vivo studies
2025-Feb-04, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11376-9
PMID:39903239
|
研究论文 | 本研究比较了混合型迭代重建(IR)、基于模型的迭代重建(MBIR)、深度学习重建(DLR)和高分辨率深度学习重建(HR-DLR)在冠状动脉CT血管造影(CCTA)中对冠状动脉狭窄评估的效果 | 首次在体外和体内研究中直接比较了HR-DLR与其他重建方法在冠状动脉狭窄评估中的效果 | 研究样本量较小,仅包括31名患者 | 比较不同重建方法在冠状动脉狭窄评估中的效果 | 冠状动脉狭窄评估 | 医学影像 | 心血管疾病 | CT扫描 | 深度学习重建(DLR) | CT图像 | 31名患者和三根不同直径的血管模型 |
1158 | 2025-02-06 |
Age-stratified deep learning model for thyroid tumor classification: a multicenter diagnostic study
2025-Feb-04, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11386-7
PMID:39903238
|
研究论文 | 本研究开发了一种基于年龄分层的深度学习模型(ASMCNet),用于甲状腺结节的分类,并探讨了年龄分层对模型准确性的影响 | 首次将年龄分层引入深度学习模型,用于甲状腺结节的分类,并验证了其提高诊断准确性的潜力 | 研究为回顾性研究,可能存在数据偏差,且未在更大规模的多中心数据集中验证模型的泛化能力 | 探讨年龄分层对甲状腺结节分类模型准确性的影响,并评估模型在临床诊断中的辅助作用 | 甲状腺结节患者 | 数字病理 | 甲状腺癌 | 深度学习 | ASMCNet | 超声图像 | 5934名患者的10391张超声图像 |
1159 | 2025-02-06 |
Deep-ELA: Deep Exploratory Landscape Analysis with Self-Supervised Pretrained Transformers for Single- and Multi-Objective Continuous Optimization Problems
2025-Feb-04, Evolutionary computation
IF:4.6Q1
DOI:10.1162/evco_a_00367
PMID:39903851
|
研究论文 | 本文提出了一种结合深度学习和探索性景观分析(ELA)特征的混合方法Deep-ELA,用于单目标和多目标连续优化问题的分析 | 提出了一种结合深度学习和ELA特征的混合方法,解决了传统ELA特征在多目标优化问题中的局限性,并减少了深度学习对大量标注数据的依赖 | 需要预训练大量随机生成的优化问题,可能在实际应用中存在计算资源消耗较大的问题 | 改进单目标和多目标连续优化问题的分析方法 | 单目标和多目标连续优化问题 | 机器学习 | NA | 深度学习,探索性景观分析(ELA) | Transformer | 数值特征 | 数百万个随机生成的优化问题 |
1160 | 2025-02-06 |
A novel cross-modal data augmentation method based on contrastive unpaired translation network for kidney segmentation in ultrasound imaging
2025-Feb-04, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17663
PMID:39904615
|
研究论文 | 本文提出了一种基于对比无配对翻译网络的新型跨模态数据增强方法,用于提高基于深度学习的肾脏超声图像分割性能 | 采用对比无配对翻译网络(CUT)从标记的腹部CT数据和无标记的肾脏超声图像中低成本获取模拟的标记肾脏超声图像,并提出了一种实例加权训练策略 | 需要依赖标记的CT数据和无标记的超声图像,且模拟图像的质量可能影响最终分割效果 | 提高基于深度学习的肾脏超声图像分割模型的准确性和泛化能力 | 肾脏超声图像 | 计算机视觉 | 肾脏疾病 | 对比无配对翻译网络(CUT) | U-Net | 图像 | 4418张标记的CT切片和4594张无标记的超声图像用于生成网络训练,4594张模拟和100张真实的肾脏超声图像用于分割网络训练,20张用于验证,169张用于测试 |