本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1181 | 2024-12-18 |
Smartwatch ECG and artificial intelligence in detecting acute coronary syndrome compared to traditional 12-lead ECG
2025-Feb, International journal of cardiology. Heart & vasculature
DOI:10.1016/j.ijcha.2024.101573
PMID:39687687
|
研究论文 | 本研究评估了基于智能手表的多通道、异步心电图(ECG)与人工智能(AI)系统结合用于诊断急性冠状动脉综合征(ACS)的可行性 | 本研究首次评估了基于智能手表的ECG与AI系统结合用于诊断ACS的可行性,并展示了其与传统12导联ECG相比的高诊断性能 | 本研究的样本量较小,且仅限于ACS患者和健康对照组,未来需要更大规模的研究来验证结果 | 评估基于智能手表的ECG与AI系统结合用于诊断ACS的可行性 | 急性冠状动脉综合征(ACS)患者和健康对照组 | 机器学习 | 心血管疾病 | 深度学习 | AI-ECG工具 | 图像 | 56名ACS患者和15名健康参与者 | NA | NA | NA | NA |
| 1182 | 2024-12-17 |
A protocol for trustworthy EEG decoding with neural networks
2025-Feb, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2024.106847
PMID:39549492
|
研究论文 | 本文设计了一种全面的脑电图解码协议,通过探索整个流程的超参数并使用多种子初始化来提供稳健的性能估计 | 提出了一个包含多种子初始化的全面超参数搜索协议,显著提高了脑电图解码的可靠性和性能 | 实验仅在特定的脑电图数据集和模型上验证,可能需要进一步验证其在其他数据集和模型上的适用性 | 设计一种可信赖且可靠的脑电图解码协议 | 脑电图解码任务中的超参数优化和性能稳定性 | 机器学习 | NA | 深度学习 | 神经网络 | 脑电图数据 | 204名参与者和26次记录会话 | NA | NA | NA | NA |
| 1183 | 2024-12-17 |
Towards generalizable face forgery detection via mitigating spurious correlation
2025-Feb, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2024.106909
PMID:39579752
|
研究论文 | 本文提出了一种通过减少特征间的虚假相关性来提高人脸伪造检测模型泛化能力的方法 | 提出了Feature Independence Constrainer (FIC)来减少特征间的虚假相关性,并引入了细粒度高频成分和特征对齐模块来增强检测模型的性能 | 未提及具体的局限性 | 提高人脸伪造检测模型在跨域场景中的泛化能力 | 人脸伪造图像和视频的检测 | 计算机视觉 | NA | 深度学习 | NA | 图像 | 多个人脸伪造基准数据集 | NA | NA | NA | NA |
| 1184 | 2024-12-17 |
TV-Net: Temporal-Variable feature harmonizing Network for multivariate time series classification and interpretation
2025-Feb, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2024.106896
PMID:39581040
|
研究论文 | 本文提出了一种时间可变特征协调网络(TV-Net),用于多变量时间序列分类和解释 | 引入了一种图注意力机制(GAT-g)来增强全局特征的学习,并首次利用博弈交互来量化特征组合的效用,通过Shapley值动态协调不同时间序列特征的表示能力 | NA | 解决多变量时间序列分类中的依赖关系学习问题,同时提供可解释性 | 多变量时间序列数据 | 机器学习 | NA | 图注意力机制(GAT-g),博弈交互 | 深度学习框架 | 时间序列 | 30个多变量时间序列数据集 | NA | NA | NA | NA |
| 1185 | 2024-12-17 |
Deep learning techniques for automated Alzheimer's and mild cognitive impairment disease using EEG signals: A comprehensive review of the last decade (2013 - 2024)
2025-Feb, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108506
PMID:39581069
|
综述 | 本文综述了过去十年中使用脑电信号进行阿尔茨海默病和轻度认知障碍自动检测的深度学习技术 | 首次系统性地探讨了使用脑电信号对轻度认知障碍和阿尔茨海默病进行分类的方法,并提出了未来研究的方向 | 本文指出了当前深度学习在轻度认知障碍和阿尔茨海默病检测中的局限性,并提出了改进建议 | 探讨深度学习技术在脑电信号检测轻度认知障碍和阿尔茨海默病中的应用,并为未来研究提供参考 | 轻度认知障碍和阿尔茨海默病 | 机器学习 | 老年疾病 | 深度学习 | NA | 脑电信号 | 74篇相关文献 | NA | NA | NA | NA |
| 1186 | 2024-12-17 |
Separable integral neural networks
2025-Feb, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2024.106838
PMID:39615156
|
研究论文 | 本文提出了一种可分离积分层,用于在连续方式下表示离散的深度可分离卷积操作,并构建了一组轻量级的可分离积分神经网络(SINNs),部署在资源受限的移动设备上 | 创新点在于提出了可分离积分层,结合了积分神经网络和可分离卷积操作的优点,能够在保持竞争性能的同时降低计算成本 | NA | 研究目的是解决传统积分神经网络在移动设备上应用时无法表示可分离卷积操作的问题 | 研究对象是可分离积分层和基于此构建的轻量级神经网络 | 机器学习 | NA | 积分神经网络 | CNN | 图像 | ImageNet数据集 | NA | NA | NA | NA |
| 1187 | 2024-12-16 |
Multi-task magnetic resonance imaging reconstruction using meta-learning
2025-Feb, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2024.110278
PMID:39580007
|
研究论文 | 本文提出了一种基于元学习的磁共振成像(MRI)多任务重建方法 | 该方法通过元学习框架,能够在不同图像对比度下高效学习图像特征,并实现多任务学习,从而在高速加速率下超越现有的单任务学习方法 | NA | 提高磁共振成像数据在不同成像序列下的重建效果 | 磁共振成像数据 | 计算机视觉 | NA | 磁共振成像(MRI) | 元学习 | 图像 | 多个MRI数据集 | NA | NA | NA | NA |
| 1188 | 2024-12-16 |
DDKG: A Dual Domain Knowledge Guidance strategy for localization and diagnosis of non-displaced femoral neck fractures
2025-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103393
PMID:39581120
|
研究论文 | 提出了一种双领域知识引导策略DDKG,用于非移位股骨颈骨折的定位和诊断 | 利用空间和语义领域知识引导模型学习非移位股骨颈骨折的鲁棒表示,无需手动标注髋关节位置 | 未提及具体局限性 | 提高非移位股骨颈骨折的诊断准确性和鲁棒性 | 非移位股骨颈骨折的定位和诊断 | 计算机视觉 | 骨科疾病 | 深度学习 | NA | 图像 | 来自四个不同中心的数据集 | NA | NA | NA | NA |
| 1189 | 2024-12-16 |
CLMS: Bridging domain gaps in medical imaging segmentation with source-free continual learning for robust knowledge transfer and adaptation
2025-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103404
PMID:39616943
|
研究论文 | 本文提出了一种名为CLMS的端到端无源领域自适应框架,通过多尺度重建、持续学习和风格对齐来弥合医疗图像分割中的领域差距 | CLMS框架整合了多尺度重建、持续学习和风格对齐,能够在没有原始源数据的情况下,仅使用未标记的目标数据或公开数据进行领域自适应,避免了灾难性遗忘并保留了源知识 | NA | 解决深度学习模型在不同医疗环境中应用时因数据差异导致的性能下降问题,实现模型在新临床环境中的安全可靠部署 | 前列腺MRI分割、结肠镜息肉分割和视网膜图像中的plus疾病分类 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA | NA | NA | NA | NA |
| 1190 | 2024-12-16 |
The Developing Human Connectome Project: A fast deep learning-based pipeline for neonatal cortical surface reconstruction
2025-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103394
PMID:39631250
|
研究论文 | 本文提出了一种基于深度学习的快速管道,用于新生儿皮质表面重建,旨在加速Developing Human Connectome Project (dHCP)中的脑图像处理 | 引入了一种多尺度形变网络进行端到端的可微分皮质表面重建,并集成了一种快速无监督的球形映射方法以最小化皮质表面与投影球体之间的度量失真 | 未提及具体的局限性 | 加速Developing Human Connectome Project (dHCP)中的新生儿皮质表面重建过程 | 新生儿脑部结构磁共振成像数据 | 计算机视觉 | NA | 深度学习 | 多尺度形变网络 | 图像 | 测试样本为82.5% | NA | NA | NA | NA |
| 1191 | 2024-12-16 |
Multi-scale region selection network in deep features for full-field mammogram classification
2025-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103399
PMID:39615148
|
研究论文 | 本文提出了一种深度多尺度区域选择网络(MRSN),用于无需ROI或分割标注的全场乳腺X光片分类 | MRSN通过多尺度特征选择,避免了依赖ROI标注,同时提高了模型性能 | NA | 开发一种无需ROI标注的全场乳腺X光片分类方法,以降低计算机辅助诊断系统的成本和复杂性 | 乳腺X光片图像 | 计算机视觉 | 乳腺癌 | 深度卷积神经网络 | CNN | 图像 | 两个公开数据集和一个私有数据集 | NA | NA | NA | NA |
| 1192 | 2024-12-14 |
Brain structural connectomic topology predicts medication response in youth with bipolar disorder: A randomized clinical trial
2025-Feb-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2024.11.061
PMID:39577502
|
研究论文 | 本研究探讨了大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的作用 | 首次研究了大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的价值,并提出了基于深度学习的预测模型 | 需要独立重复实验来验证初步发现 | 研究大脑结构连接组拓扑结构在预测双相情感障碍青少年药物反应中的作用 | 双相情感障碍青少年患者的大脑结构连接组拓扑结构 | 神经影像学 | 双相情感障碍 | 结构磁共振成像(MRI) | 深度学习模型 | 图像 | 121名未接受过精神药物治疗的双相情感障碍I型青少年 | NA | NA | NA | NA |
| 1193 | 2024-12-14 |
A multi-perspective deep learning framework for enhancer characterization and identification
2025-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本研究介绍了一种用于增强子特征化和识别的多视角深度学习框架MPDL-Enhancer | 创新的双尺度深度神经网络和独特的特征表示策略 | NA | 准确识别和表征增强子,以理解基因调控网络及相关疾病的发展 | 增强子序列 | 机器学习 | NA | dna2vec模型 | 双尺度深度神经网络 | DNA序列 | 独立测试数据集 | NA | NA | NA | NA |
| 1194 | 2024-12-14 |
Investigating streetscape environmental characteristics associated with road traffic crashes using street view imagery and computer vision
2025-Feb, Accident; analysis and prevention
DOI:10.1016/j.aap.2024.107851
PMID:39581057
|
研究论文 | 本研究利用街景图像和计算机视觉技术,结合语义分割和目标检测网络,分析了街道环境特征与道路交通事故之间的关系 | 本研究通过结合语义分割和目标检测网络,全面测量街道环境特征,克服了传统方法仅依赖语义分割的局限性 | 本研究主要基于百度街景图像,可能无法完全代表所有地区的街道环境特征 | 探讨街道环境特征与道路交通事故之间的关系,为提升道路安全提供依据 | 街道环境特征(如道路、人行道、建筑物等)与三种交通事故类型(车辆-车辆碰撞、车辆-行人碰撞、单车事故) | 计算机视觉 | NA | 深度学习 | 语义分割网络和目标检测网络 | 图像 | NA | NA | NA | NA | NA |
| 1195 | 2024-12-14 |
IoT based healthcare system using fractional dung beetle optimization enabled deep learning for breast cancer classification
2025-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种基于物联网的医疗系统,利用分数阶蜣螂优化算法支持的深度学习进行乳腺癌分类 | 创新点在于结合了物联网技术和分数阶蜣螂优化算法,通过SqueezeNet_Fractional Dung Beetle Optimization (Squeeze_FDBO)提高了乳腺癌分类的准确性和路由性能 | NA | 旨在提高乳腺癌分类的准确性,从而促进早期检测和治疗 | 乳腺癌的分类和诊断 | 计算机视觉 | 乳腺癌 | 分数阶蜣螂优化算法 | SqueezeNet | 图像 | NA | NA | NA | NA | NA |
| 1196 | 2024-10-14 |
Corrigendum to 'Deep learning dives: Predicting anxiety in Zebrafish through novel tank assay analysis' Physiology & Behavior (2024), 114696
2025-Feb-01, Physiology & behavior
IF:2.4Q2
DOI:10.1016/j.physbeh.2024.114705
PMID:39395874
|
correction | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1197 | 2024-12-11 |
Enhancing forensic blood detection using hyperspectral imaging and advanced preprocessing techniques
2025-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2024.127097
PMID:39454346
|
研究论文 | 本研究探讨了使用高光谱成像(HSI)和先进预处理技术来增强法医血液检测的方法 | 引入了名为Fast Extraction(FE)框架的新方法,包括Enhancing Transformation Reduction(ETR)方法和兼容的分类模型,显著提高了血液检测的准确性和效率 | 未提及具体局限性 | 提高法医血液检测的准确性和效率 | 血液检测中的高光谱成像数据 | 计算机视觉 | NA | 高光谱成像(HSI) | 分类模型 | 图像 | 使用HyperBlood数据集进行验证 | NA | NA | NA | NA |
| 1198 | 2024-12-11 |
Small-data-trained model for predicting nitrate accumulation in one-stage partial nitritation-anammox processes controlled by oxygen supply rate
2025-Feb-01, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2024.122798
PMID:39581117
|
研究论文 | 本研究提出了一种基于氧气供应率控制硝酸盐积累的新策略,并通过实验和深度学习模型验证了其有效性 | 提出了基于氧气供应率控制硝酸盐积累的新策略,并开发了一种结合门控循环单元和多层感知器的深度学习模型来预测硝酸盐积累 | 实验规模为实验室级别,可能需要进一步验证其在实际污水处理中的应用效果 | 研究如何通过控制氧气供应率来有效防止部分硝化-厌氧氨氧化过程中硝酸盐的积累 | 部分硝化-厌氧氨氧化过程中的硝酸盐积累 | 环境工程 | NA | 深度学习 | 门控循环单元和多层感知器 | 实验数据 | 一个实验室规模的单级部分硝化-厌氧氨氧化系统,持续运行135天,分为五个阶段 | NA | NA | NA | NA |
| 1199 | 2024-12-11 |
Stress recognition identifying relevant facial action units through explainable artificial intelligence and machine learning
2025-Feb, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2024.108507
PMID:39608217
|
研究论文 | 本文研究了基于面部动作单元(AUs)的自动急性应激识别,使用了传统机器学习和深度学习技术 | 本文提出了一个新的实验数据集,并使用计算特征选择方法来选择相关AUs的组合子集,结合传统机器学习和深度学习方法进行应激条件下的AUs识别 | NA | 研究自动急性应激识别 | 面部动作单元(AUs) | 机器学习 | NA | Layer-Wise Relevance Propagation算法 | 传统机器学习和深度学习方法 | 图像 | 58名参与者 | NA | NA | NA | NA |
| 1200 | 2024-12-11 |
Predicting the risk of chronic kidney disease based on uric acid concentration in stones using biosensors integrated with a deep learning-based ANN system
2025-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2024.127077
PMID:39476796
|
研究论文 | 本研究开发了一种基于生物传感器的尿酸浓度检测方法,并结合深度学习的人工神经网络系统预测慢性肾病风险 | 首次将生物传感器与深度学习结合,用于检测尿石中的尿酸浓度并预测慢性肾病风险 | 实验范围仅限于0.15-5 mM的尿酸浓度,可能不适用于更高浓度的情况 | 开发一种新的方法来预测慢性肾病的风险 | 尿石中的尿酸浓度和慢性肾病风险 | 生物传感器 | 慢性肾病 | 生物传感器、循环伏安法 | 人工神经网络 | 数值数据 | 使用Chronic_Kidney_Disease数据集和文献中的补充数据进行训练 | NA | NA | NA | NA |