本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1181 | 2025-01-24 |
Advances in diagnosis and prognosis of bacteraemia, bloodstream infection, and sepsis using machine learning: A comprehensive living literature review
2025-Feb, Artificial intelligence in medicine
IF:6.1Q1
DOI:10.1016/j.artmed.2024.103008
PMID:39705768
|
文献综述 | 本文综述了机器学习在菌血症、血流感染和败血症诊断与预后中的应用,探讨了其有效性、潜在局限性和临床实践中的整合复杂性 | 提供了关于机器学习在血液相关感染管理中应用的全面调查,强调了早期疾病阶段的研究空白和实时非侵入性数据收集技术的潜力 | 早期阶段的研究因数据限制而不足,序列深度学习模型在外部数据集上表现不佳,实际实施面临设计要求和医疗基础设施的挑战 | 探讨机器学习在血液相关感染诊断和预后中的应用,以改善医疗决策支持 | 菌血症、血流感染和败血症 | 机器学习 | 败血症 | 机器学习 | 序列深度学习模型 | 电子健康记录、生化标志物、生命体征 | NA |
1182 | 2025-01-24 |
Mixed reality infrastructure based on deep learning medical image segmentation and 3D visualization for bone tumors using DCU-Net
2025-Feb, Journal of bone oncology
IF:3.1Q2
DOI:10.1016/j.jbo.2024.100654
PMID:39839577
|
研究论文 | 本研究提出了一种基于双维度降维和通道注意力门控机制的U-Net模型(DCU-Net),用于骨肿瘤的医学图像分割和3D重建,并构建了混合现实(MR)基础设施,探索其在骨肿瘤诊断和治疗中的应用前景 | 提出了DCU-Net模型,结合双维度降维和通道注意力门控机制,优化特征提取和目标空间聚类能力,实现了骨肉瘤的自动分割和3D重建,并构建了基于深度学习和混合现实的MR基础设施 | 未提及具体的数据集规模和多样性,可能影响模型的泛化能力 | 提高骨肿瘤CT图像分割的性能,并通过3D重建和混合现实技术增强临床医生对肿瘤形态和空间关系的理解 | 骨肿瘤的CT图像 | 计算机视觉 | 骨肿瘤 | DCU-Net模型,3D重建技术,混合现实(MR)技术 | DCU-Net | 图像 | 医院数据集(具体数量未提及) |
1183 | 2025-01-24 |
Mid-infrared spectra of dried and roasted cocoa (Theobroma cacao L.): A dataset for machine learning-based classification of cocoa varieties and prediction of theobromine and caffeine content
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111243
PMID:39840227
|
研究论文 | 本文提供了一个关于干燥和烘焙可可豆的中红外光谱数据集,用于基于机器学习的可可品种分类和可可碱及咖啡因含量预测 | 该数据集结合了中红外光谱数据和HPLC定量分析,为机器学习模型提供了非破坏性的方法来预测可可碱和咖啡因含量及可可品种 | 数据集的应用可能受限于样本的多样性和实验条件的控制 | 开发自动化工具以支持可可工业中的实时质量控制、品种分类和产品优化 | 干燥和烘焙的可可豆 | 机器学习 | NA | ATR-FTIR光谱和HPLC | NA | 光谱数据 | 数据集包含根据实验条件和重复组织的Excel表格 |
1184 | 2025-01-23 |
A hybrid deep learning model based on signal decomposition and dynamic feature selection for forecasting the influent parameters of wastewater treatment plants
2025-Feb-01, Environmental research
IF:7.7Q1
DOI:10.1016/j.envres.2024.120615
PMID:39674247
|
研究论文 | 本文提出了一种结合信号分解和深度学习的混合模型,用于预测污水处理厂的进水参数,如化学需氧量(COD)和五日生化需氧量(BOD) | 引入了新的动态特征选择(DFS)机制,以实时优化特征选择,减少模型冗余并提高预测稳定性 | NA | 提高污水处理厂进水参数(如COD和BOD)的预测准确性,以优化污水处理过程、提高效率并降低成本 | 污水处理厂的进水参数(COD和BOD) | 机器学习 | NA | 信号分解和深度学习 | 混合深度学习模型 | 时间序列数据 | 两个污水处理厂的数据 |
1185 | 2025-01-23 |
One-core neuron deep learning for time series prediction
2025-Feb, National science review
IF:16.3Q1
DOI:10.1093/nsr/nwae441
PMID:39830389
|
研究论文 | 本文提出了一种仅包含单个核心神经元的可解释'小模型'框架,即单核心神经元系统(OCNS),用于时间序列预测,旨在显著减少参数数量同时保持与现有'大模型'相当的性能 | 提出了一种仅包含单个核心神经元的深度学习框架,通过多延迟反馈设计,能够将输入特征向量/状态转换为一维时间序列/序列,理论上确保完全表示观测动态系统的状态 | 未提及具体的时间序列预测任务或数据集,可能限制了结果的普适性验证 | 探索在时间序列预测任务中构建参数少、性能优的深度学习框架 | 时间序列数据 | 机器学习 | NA | 深度学习 | 单核心神经元系统(OCNS) | 时间序列数据 | NA |
1186 | 2025-01-23 |
BananaImageBD: A comprehensive banana image dataset for classification of banana varieties and detection of ripeness stages in Bangladesh
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111239
PMID:39830620
|
研究论文 | 本文介绍了一个全面的香蕉图像数据集BananaImageBD,用于分类香蕉品种和检测成熟度阶段 | 该数据集包含了孟加拉国四种常见香蕉品种和四个关键成熟阶段的详细图像,具有推动精准农业、食品加工和供应链管理等领域自动化和高效流程发展的潜力 | 数据集仅限于孟加拉国的香蕉品种和成熟阶段,可能不适用于其他地区或品种 | 开发自动化和高效的香蕉品种分类和成熟度检测系统 | 孟加拉国的四种常见香蕉品种及其四个成熟阶段 | 计算机视觉 | NA | NA | 机器学习和深度学习模型 | 图像 | 2471张不同香蕉品种的原始图像和820张不同成熟阶段的原始图像,增强后的数据集分别包含7413张和2457张图像 |
1187 | 2025-01-22 |
A comprehensive review on genomic insights and advanced technologies for mastitis prevention in dairy animals
2025-Feb, Microbial pathogenesis
IF:3.3Q2
DOI:10.1016/j.micpath.2024.107233
PMID:39694196
|
review | 本文综述了基因组学及其相关技术在预防奶牛乳腺炎中的应用,包括全基因组学、表观遗传学、蛋白质组学和转录组学,并探讨了人工智能和CRISPR等先进技术在提高诊断、预防和治疗策略方面的潜力 | 整合了基因组学、人工智能和CRISPR等先进技术,提供了对乳腺炎流行病学、病原体进化的深入理解,并提出了更有效的诊断、预防和治疗策略 | 未提及具体的研究样本数量和数据来源,可能缺乏实证研究的支持 | 探讨基因组学和先进技术在预防奶牛乳腺炎中的应用,以提高牛奶产量和农场盈利能力 | 奶牛乳腺炎 | 基因组学 | 乳腺炎 | 全基因组学、表观遗传学、蛋白质组学、转录组学、CRISPR | CNN | 基因组数据、蛋白质数据、转录组数据 | NA |
1188 | 2025-01-16 |
A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond
2025-Feb, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103385
PMID:39612808
|
综述 | 本文全面回顾了深度学习在医学图像配准领域的最新进展,包括网络架构、损失函数、不确定性估计方法及评估指标 | 深入探讨了深度学习在图像配准中的创新网络架构、特定于配准的损失函数以及配准不确定性估计方法 | 未提及具体的技术局限性 | 总结深度学习在医学图像配准领域的最新进展,并探讨其未来发展方向 | 医学图像配准技术 | 计算机视觉 | NA | 深度学习 | U-Net | 医学图像 | NA |
1189 | 2025-01-16 |
Money plant disease atlas: A comprehensive dataset for disease classification in ornamental horticulture
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111216
PMID:39811518
|
研究论文 | 本文介绍了一个用于观赏园艺中疾病分类的综合数据集,重点关注金钱植物的疾病 | 提供了一个全面的金钱植物疾病图像数据集,支持深度学习在观赏园艺中的应用 | 数据集仅限于金钱植物的疾病,未涵盖其他植物种类 | 提高观赏园艺中植物疾病的诊断准确性 | 金钱植物(Epipremnum aureum) | 计算机视觉 | 植物疾病 | 图像处理 | 深度学习 | 图像 | 224 × 224像素的图像数据集 |
1190 | 2025-01-15 |
Deep learning in disease vector image identification
2025-Feb, Pest management science
IF:3.8Q1
DOI:10.1002/ps.8473
PMID:39422093
|
综述 | 本文探讨了深度学习在病媒图像识别中的巨大潜力,并全面总结了当前深度学习在病媒识别中的应用现状 | 结合深度学习与病媒识别,自动化病媒识别过程,减少对专家的依赖 | 未提及具体的技术实现细节和实验结果的局限性 | 探索深度学习在病媒识别中的应用,以提升疾病控制效率 | 病媒图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
1191 | 2025-01-15 |
Drone imagery dataset for early-season weed classification in maize and tomato crops
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111203
PMID:39802837
|
研究论文 | 本文介绍了一个用于早期季节杂草分类的无人机图像数据集,专注于玉米和番茄作物 | 提供了一个包含两个作物生长阶段的RGB图像数据集,旨在提高早期杂草分类的准确性 | 数据集中未明确提及杂草种类的具体名称,可能影响特定杂草分类的研究 | 推动基于无人机的杂草检测和映射技术,促进精准农业的发展 | 玉米和番茄作物中的杂草 | 计算机视觉 | NA | 无人机成像 | CNN, ViT | 图像 | 67,558张标记图像(31,002张来自早期生长阶段,36,556张来自更高级生长阶段) |
1192 | 2025-01-15 |
A dataset of blood slide images for AI-based diagnosis of malaria
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111190
PMID:39802838
|
研究论文 | 本文介绍了一个用于基于AI的疟疾诊断的血涂片图像数据集 | 提供了一个包含厚薄血涂片图像的基准数据集,支持使用卷积神经网络构建计算模型 | 数据集仅来自乌干达的几家医院,可能不具有全球代表性 | 提高疟疾筛查的效率和准确性 | 疟疾诊断 | 数字病理学 | 疟疾 | 显微镜检查 | CNN | 图像 | 3000张厚血涂片图像和1000张薄血涂片图像 |
1193 | 2025-01-14 |
Applications of MRI in Schizophrenia: Current Progress in Establishing Clinical Utility
2025-Feb, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29470
PMID:38946400
|
综述 | 本文综述了MRI在精神分裂症中的临床应用进展,包括其在筛查高风险个体、预测疾病发作、症状及治疗结果方面的潜力 | 整合机器学习和深度学习技术,开发智能诊断和预后工具,利用提取或选择的影像特征 | MRI研究发现与实际临床应用之间存在差距 | 探讨MRI在精神分裂症中的临床应用潜力 | 精神分裂症患者 | 数字病理学 | 精神分裂症 | MRI | 机器学习和深度学习 | 影像数据 | NA |
1194 | 2025-01-13 |
Computational pathology applied to clinical colorectal cancer cohorts identifies immune and endothelial cell spatial patterns predictive of outcome
2025-Feb, The Journal of pathology
IF:5.6Q1
DOI:10.1002/path.6378
PMID:39788558
|
研究论文 | 本研究通过计算病理学方法,分析了三个临床结直肠癌队列中的肿瘤微环境,识别出预测预后的免疫和内皮细胞空间模式 | 使用深度学习细胞分类器对H&E染色切片中的八种细胞类型进行检测,并量化了这些细胞类型的空间组织和共定位,揭示了肿瘤微环境中与治疗反应相关的重要因素 | 研究结果基于特定分子亚型和治疗历史的患者队列,可能不适用于所有结直肠癌患者 | 研究结直肠癌肿瘤微环境在肿瘤进展中的作用,并识别预测预后的生物标志物 | 三个临床结直肠癌队列中的肿瘤微环境 | 数字病理学 | 结直肠癌 | 深度学习细胞分类器 | 深度学习 | 图像 | 375例临床注释的结直肠癌患者 |
1195 | 2025-01-12 |
Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression
2025-Feb-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001110
PMID:39043213
|
研究论文 | 本研究评估了一种新型深度学习重建算法在胰腺MRI检查中的应用,旨在缩短屏气时间并提高图像质量 | 首次在临床环境中评估了深度学习重建算法在胰腺病理学背景下的加速MRI检查中的应用,并显著缩短了屏气时间 | 研究为单中心研究,样本量较小(32名参与者),且仅使用了1.5 T MRI扫描仪 | 评估深度学习重建算法在胰腺MRI检查中的性能,包括缩短屏气时间、提高图像质量和诊断信心 | 患有各种胰腺疾病的患者 | 医学影像 | 胰腺疾病 | 深度学习重建算法,Dixon脂肪抑制技术 | 深度学习模型 | MRI图像 | 32名参与者(平均年龄62±19岁,20名男性) |
1196 | 2025-01-12 |
Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction
2025-Feb-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001107
PMID:39074258
|
研究论文 | 本研究比较了两种重新实现的最先进深度学习方法与一种提出的对比信号提取方法,用于从非对比和低剂量图像合成人工T1加权全剂量图像 | 提出了一种新的对比信号提取方法,显著改善了合成后对比图像的质量 | 在现有剂量下,仍有相当比例的图像与参考图像的可互换性不足 | 比较不同深度学习方法在合成人工T1加权全剂量图像中的性能 | 213名接受脑部磁共振成像的参与者 | 医学影像 | NA | 磁共振成像 | 深度学习方法 | 图像 | 213名参与者,其中50名作为测试集 |
1197 | 2025-01-12 |
Trap colour strongly affects the ability of deep learning models to recognize insect species in images of sticky traps
2025-Feb, Pest management science
IF:3.8Q1
DOI:10.1002/ps.8464
PMID:39377441
|
研究论文 | 本研究探讨了粘虫板颜色和成像设备对深度学习模型在粘虫板上分类害虫性能的影响 | 首次深入研究了粘虫板颜色对深度学习模型分类害虫性能的影响,并提出了使用透明粘虫板作为训练数据以提高模型准确性的方法 | 研究仅使用了MobileNetV2架构,未探索其他深度学习模型的效果 | 研究粘虫板颜色和成像设备对深度学习模型分类害虫性能的影响 | 粘虫板上的害虫 | 计算机视觉 | NA | 深度学习 | MobileNetV2 | 图像 | NA |
1198 | 2025-01-12 |
Bioimaging and the future of whole-organismal developmental physiology
2025-Feb, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
DOI:10.1016/j.cbpa.2024.111783
PMID:39581226
|
评论 | 本文探讨了生物成像在整体生物发育生理学研究中的重要性及其未来潜力 | 强调了图像分析,特别是深度学习方法,在推动对发育动物生长和功能理解方面的潜力,并探讨了计算机视觉在不同物种、生命阶段和实验中的可转移性 | 未具体提及研究的局限性 | 评估成像作为测量整体生物发育生理学手段的重要性,并探索计算机视觉在该领域的应用 | 发育中的动物 | 计算机视觉 | NA | 生物成像 | 深度学习 | 图像 | NA |
1199 | 2025-01-12 |
Stress testing deep learning models for prostate cancer detection on biopsies and surgical specimens
2025-Feb, The Journal of pathology
IF:5.6Q1
DOI:10.1002/path.6373
PMID:39660731
|
研究论文 | 本文研究了深度学习模型在前列腺癌检测中的应用,特别是在活检和手术标本上的表现差异 | 探讨了样本处理差异对深度学习模型性能的影响,并提出了需要针对不同样本类型(活检和手术标本)定制机器学习模型的必要性 | 研究仅基于特定数据集(宾夕法尼亚大学和NRG/RTOG 0521临床试验),可能无法完全代表所有临床环境 | 研究样本处理差异对深度学习模型在前列腺癌检测中性能的影响 | 前列腺癌的活检和手术标本 | 数字病理学 | 前列腺癌 | 深度学习 | CNN (DenseNet) | 图像 | 1,000个样本(包括100个手术标本和50个活检标本),以及来自NRG/RTOG 0521临床试验的750个活检标本 |
1200 | 2025-01-12 |
Unveiling the power of artificial intelligence for image-based diagnosis and treatment in endodontics: An ally or adversary?
2025-Feb, International endodontic journal
IF:5.4Q1
DOI:10.1111/iej.14163
PMID:39526945
|
综述 | 本文综述了人工智能在牙髓病学中的应用,评估了其在2D和3D成像中的使用,并探讨了其作为有益工具或潜在挑战的角色 | 本文详细探讨了人工智能在牙髓病学中的创新应用,特别是在2D和3D成像中的诊断和治疗规划方面的显著提升 | 一些研究指出,AI模型的训练依赖于体外或离体数据集,这些数据集无法复制临床环境的复杂性,可能影响AI应用的可靠性 | 评估人工智能在牙髓病学中的应用,特别是在2D和3D成像中的使用,并探讨其作为有益工具或潜在挑战的角色 | 牙髓病学中的2D和3D成像数据 | 计算机视觉 | 牙髓病 | 深度学习算法 | 卷积神经网络(CNN) | 2D和3D图像 | NA |