本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1241 | 2025-01-26 |
PTSP-BERT: Predict the thermal stability of proteins using sequence-based bidirectional representations from transformer-embedded features
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109598
PMID:39708499
|
研究论文 | 本文开发了一种基于蛋白质序列的深度学习模型PSTP-BERT,用于直接识别嗜热、嗜温和嗜冷蛋白质的三类分类 | PSTP-BERT模型能够直接进行三类分类,而现有机器学习方法只能进行嗜热与非嗜热或嗜冷与非嗜冷蛋白质的二元分类 | NA | 开发一种能够直接识别嗜热、嗜温和嗜冷蛋白质的深度学习模型 | 嗜热、嗜温和嗜冷蛋白质 | 机器学习 | NA | 深度学习 | BERT | 蛋白质序列 | NA |
1242 | 2025-01-27 |
Generalized fractional optimization-based explainable lightweight CNN model for malaria disease classification
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109593
PMID:39709870
|
研究论文 | 本文提出了一种基于广义分数阶优化的可解释轻量级CNN模型,用于疟疾疾病分类 | 提出了一种基于分数阶优化算法的轻量级卷积神经网络模型,解决了现有深度学习模型在计算效率和可解释性方面的不足 | 未提及具体局限性 | 提高疟疾疾病诊断的准确性和效率 | 疟疾疾病分类 | 计算机视觉 | 疟疾 | 深度学习 | CNN | 图像 | 标准NIH数据集、外部MP-IDB数据集和M5测试集 |
1243 | 2025-01-27 |
Named entity recognition for de-identifying Spanish electronic health records
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109576
PMID:39709869
|
研究论文 | 本研究探索了西班牙语电子健康记录(EHRs)的自动去识别化,采用命名实体识别任务,并开发了两种基于深度学习的方法 | 首次在西班牙语EHRs上应用Transformer模型进行去识别化,并展示了其优于传统RNN模型的性能 | 研究主要依赖于一个包含599个真实临床案例的私有语料库,可能限制了模型的泛化能力 | 实现西班牙语电子健康记录的自动去识别化,以保护患者隐私并促进数据共享 | 西班牙语电子健康记录 | 自然语言处理 | NA | 命名实体识别 | RNN, Transformer | 文本 | 599个真实临床案例 |
1244 | 2025-01-27 |
Latent representation learning for classification of the Doppler ultrasound images
2025-Feb, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109575
PMID:39729855
|
研究论文 | 本文提出了一种用于多普勒超声图像分类的潜在表示权重学习方法(LRWL),以解决图像长度不一和维度差异的问题 | LRWL方法能够处理长度不一的多图像问题,特别是针对不规则多图像问题,并提出了空间交互测量(SIM)方法来验证LRWL在捕捉图像间关系方面的准确性 | 未明确提及具体局限性 | 通过多普勒超声图像进行妊娠预测 | 多普勒超声图像 | 计算机视觉 | 妊娠相关疾病 | 深度学习(DL) | LRWL(潜在表示权重学习) | 图像 | 真实不规则生殖数据集和两个合成规则数据集 |
1245 | 2025-01-27 |
Assessment of deep learning technique for fully automated mandibular segmentation
2025-Feb, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
IF:2.7Q1
DOI:10.1016/j.ajodo.2024.09.006
PMID:39863342
|
研究论文 | 本研究评估了一种基于卷积神经网络的自动分割下颌骨的开源模型 | 使用MONAI Label主动学习工具扩展训练自动模型,并评估其在临床中的适用性 | 样本量较小,仅包含55个锥形束计算机断层扫描 | 评估自动分割下颌骨模型的精度 | 下颌骨的自动分割 | 计算机视觉 | NA | 锥形束计算机断层扫描 | 卷积神经网络(CNN) | 图像 | 55个锥形束计算机断层扫描 |
1246 | 2025-01-26 |
Fully automated coronary artery calcium score and risk categorization from chest CT using deep learning and multiorgan segmentation: A validation study from National Lung Screening Trial (NLST)
2025-Feb, International journal of cardiology. Heart & vasculature
DOI:10.1016/j.ijcha.2024.101593
PMID:39850777
|
研究论文 | 本研究利用深度学习模型从非心电图门控胸部CT扫描中自动检测、量化和进行冠状动脉钙化评分(CACS)的风险分类 | 使用基于Mask R-CNN的神经网络进行多器官分割,实现冠状动脉钙化评分的全自动量化和风险分类 | 研究中仅使用了80名患者训练分割模型,样本量相对较小 | 验证深度学习模型在自动检测和量化冠状动脉钙化评分中的应用 | 高风险人群的胸部CT扫描 | 计算机视觉 | 心血管疾病 | 深度学习 | Mask R-CNN | 图像 | 80名患者用于训练,1442名患者用于验证 |
1247 | 2025-01-25 |
MRI-based deep learning and radiomics for predicting the efficacy of PD-1 inhibitor combined with induction chemotherapy in advanced nasopharyngeal carcinoma: A prospective cohort study
2025-Feb, Translational oncology
IF:4.5Q1
DOI:10.1016/j.tranon.2024.102245
PMID:39662448
|
研究论文 | 本研究旨在基于MRI的深度学习和放射组学特征,建立并评估预测PD-1抑制剂联合GP诱导化疗在晚期鼻咽癌中疗效的模型 | 结合放射组学特征和深度学习特征(DLFs),构建了Tf_Radiomics+Resnet101模型,该模型在预测PD-1抑制剂联合GP化疗疗效方面表现出色 | 样本量相对较小,且仅基于MRI数据,未考虑其他可能影响疗效的因素 | 预测PD-1抑制剂联合GP诱导化疗在晚期鼻咽癌中的疗效 | 晚期鼻咽癌患者 | 数字病理学 | 鼻咽癌 | MRI | Resnet101 | 图像 | 99名晚期鼻咽癌患者 |
1248 | 2025-01-25 |
LipBengal: Pioneering Bengali lip-reading dataset for pronunciation mapping through lip gestures
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111254
PMID:39845145
|
研究论文 | 本文介绍了一个名为LipBengal的开创性孟加拉语唇读数据集,旨在通过唇部动作进行发音映射 | 填补了孟加拉语唇读研究领域的空白,提供了首个专门针对孟加拉语的唇读数据集,包含150名说话者的视觉数据,涵盖54个类别,包括孟加拉语音素、字母和符号 | 数据采集环境多样且不受控制,可能影响模型的泛化能力 | 推动孟加拉语唇读和视觉语音识别研究,促进未来应用和技术进步 | 孟加拉语音素、字母和符号的唇部动作 | 自然语言处理 | NA | 深度学习 | NA | 视频 | 150名说话者,涵盖54个类别 |
1249 | 2025-01-25 |
Smartphone image dataset for radish plant leaf disease classification from Bangladesh
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111263
PMID:39850369
|
研究论文 | 本文介绍了一个用于萝卜叶病分类的智能手机图像数据集,旨在通过深度学习模型准确识别叶病,促进萝卜的健康生长 | 创建了一个包含2801张萝卜叶图像的全面数据集,涵盖健康叶片和四种病害叶片,为深度学习模型训练提供了基础 | 数据集仅来自孟加拉国的蔬菜田,可能限制了模型的泛化能力 | 精确识别萝卜叶病,以促进萝卜的健康生长和农业的可持续发展 | 萝卜叶 | 计算机视觉 | 植物病害 | 深度学习 | NA | 图像 | 2801张萝卜叶图像 |
1250 | 2024-08-07 |
Deep learning to predict fetal acidemia
2025-Feb, American journal of obstetrics and gynecology
IF:8.7Q1
DOI:10.1016/j.ajog.2024.07.031
PMID:39084497
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1251 | 2024-08-07 |
Deep learning to predict fetal acidemia: a response
2025-Feb, American journal of obstetrics and gynecology
IF:8.7Q1
DOI:10.1016/j.ajog.2024.07.037
PMID:39074680
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1252 | 2025-01-24 |
Deep learning-based classifier for carcinoma of unknown primary using methylation quantitative trait loci
2025-Feb-01, Journal of neuropathology and experimental neurology
IF:3.2Q2
DOI:10.1093/jnen/nlae123
PMID:39607989
|
研究论文 | 本文开发了一种基于深度学习的DNA甲基化分类器,用于识别未知原发癌(CUP)的原发部位 | 利用特定器官的甲基化数量性状位点(mQTL)开发分类器,提高了分类准确性并减少了所需样本量 | 研究依赖于回顾性分析,且样本来源仅限于福尔马林固定石蜡包埋组织 | 开发一种能够辅助病理学家识别未知原发癌原发部位的DNA甲基化分类器 | 759例来自福尔马林固定石蜡包埋组织的癌样本 | 数字病理学 | 未知原发癌 | DNA甲基化阵列分析 | 深度学习 | 甲基化数据 | 759例癌样本 |
1253 | 2025-01-24 |
Automatic classification of HEp-2 specimens by explainable deep learning and Jensen-Shannon reliability index
2025-Feb, Artificial intelligence in medicine
IF:6.1Q1
DOI:10.1016/j.artmed.2024.103030
PMID:39637573
|
研究论文 | 本文介绍了一种基于迁移学习和预训练深度学习模型的创新平台,用于自动分类HEp-2标本,并通过Jensen-Shannon可靠性指数增强方法的可信度 | 结合无监督深度描述、新型特征选择方法和独立测试数据集,提出了一种改进的梯度加权类激活映射和基于Jensen-Shannon散度的样本质量指数 | 未来工作将解决有丝分裂纺锤体识别的挑战,并扩展方法以覆盖混合模式 | 开发一种计算机辅助系统,用于HEp-2图像分析和ANA模式分类 | HEp-2标本 | 计算机视觉 | 结缔组织疾病 | 迁移学习 | 深度学习模型 | 图像 | 两个来自不同医院的独立数据集 |
1254 | 2025-01-24 |
Increased chloroplast occupancy in bundle sheath cells of rice hap3H mutants revealed by Chloro-Count: a new deep learning-based tool
2025-Feb, The New phytologist
DOI:10.1111/nph.20332
PMID:39668515
|
研究论文 | 本研究开发了一种基于深度学习的工具Chloro-Count,用于量化水稻OsHAP3H功能获得和缺失突变体束鞘细胞中叶绿体的尺寸 | 开发了新的深度学习工具Chloro-Count,首次实现了对水稻束鞘细胞中叶绿体尺寸的精确量化,并揭示了OsHAP3H功能缺失导致叶绿体数量增加的机制 | 2D量化方法受叶绿体在细胞中位置的影响,可能存在一定的误差 | 提高水稻光合作用效率,增加产量潜力 | 水稻OsHAP3H功能获得和缺失突变体 | 计算机视觉 | NA | 深度学习 | NA | 图像 | OsHAP3H功能获得和缺失突变体 |
1255 | 2025-01-24 |
Advances in diagnosis and prognosis of bacteraemia, bloodstream infection, and sepsis using machine learning: A comprehensive living literature review
2025-Feb, Artificial intelligence in medicine
IF:6.1Q1
DOI:10.1016/j.artmed.2024.103008
PMID:39705768
|
文献综述 | 本文综述了机器学习在菌血症、血流感染和败血症诊断与预后中的应用,探讨了其有效性、潜在局限性和临床实践中的整合复杂性 | 提供了关于机器学习在血液相关感染管理中应用的全面调查,强调了早期疾病阶段的研究空白和实时非侵入性数据收集技术的潜力 | 早期阶段的研究因数据限制而不足,序列深度学习模型在外部数据集上表现不佳,实际实施面临设计要求和医疗基础设施的挑战 | 探讨机器学习在血液相关感染诊断和预后中的应用,以改善医疗决策支持 | 菌血症、血流感染和败血症 | 机器学习 | 败血症 | 机器学习 | 序列深度学习模型 | 电子健康记录、生化标志物、生命体征 | NA |
1256 | 2025-01-24 |
Mixed reality infrastructure based on deep learning medical image segmentation and 3D visualization for bone tumors using DCU-Net
2025-Feb, Journal of bone oncology
IF:3.1Q2
DOI:10.1016/j.jbo.2024.100654
PMID:39839577
|
研究论文 | 本研究提出了一种基于双维度降维和通道注意力门控机制的U-Net模型(DCU-Net),用于骨肿瘤的医学图像分割和3D重建,并构建了混合现实(MR)基础设施,探索其在骨肿瘤诊断和治疗中的应用前景 | 提出了DCU-Net模型,结合双维度降维和通道注意力门控机制,优化特征提取和目标空间聚类能力,实现了骨肉瘤的自动分割和3D重建,并构建了基于深度学习和混合现实的MR基础设施 | 未提及具体的数据集规模和多样性,可能影响模型的泛化能力 | 提高骨肿瘤CT图像分割的性能,并通过3D重建和混合现实技术增强临床医生对肿瘤形态和空间关系的理解 | 骨肿瘤的CT图像 | 计算机视觉 | 骨肿瘤 | DCU-Net模型,3D重建技术,混合现实(MR)技术 | DCU-Net | 图像 | 医院数据集(具体数量未提及) |
1257 | 2025-01-24 |
Mid-infrared spectra of dried and roasted cocoa (Theobroma cacao L.): A dataset for machine learning-based classification of cocoa varieties and prediction of theobromine and caffeine content
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111243
PMID:39840227
|
研究论文 | 本文提供了一个关于干燥和烘焙可可豆的中红外光谱数据集,用于基于机器学习的可可品种分类和可可碱及咖啡因含量预测 | 该数据集结合了中红外光谱数据和HPLC定量分析,为机器学习模型提供了非破坏性的方法来预测可可碱和咖啡因含量及可可品种 | 数据集的应用可能受限于样本的多样性和实验条件的控制 | 开发自动化工具以支持可可工业中的实时质量控制、品种分类和产品优化 | 干燥和烘焙的可可豆 | 机器学习 | NA | ATR-FTIR光谱和HPLC | NA | 光谱数据 | 数据集包含根据实验条件和重复组织的Excel表格 |
1258 | 2025-01-23 |
A hybrid deep learning model based on signal decomposition and dynamic feature selection for forecasting the influent parameters of wastewater treatment plants
2025-Feb-01, Environmental research
IF:7.7Q1
DOI:10.1016/j.envres.2024.120615
PMID:39674247
|
研究论文 | 本文提出了一种结合信号分解和深度学习的混合模型,用于预测污水处理厂的进水参数,如化学需氧量(COD)和五日生化需氧量(BOD) | 引入了新的动态特征选择(DFS)机制,以实时优化特征选择,减少模型冗余并提高预测稳定性 | NA | 提高污水处理厂进水参数(如COD和BOD)的预测准确性,以优化污水处理过程、提高效率并降低成本 | 污水处理厂的进水参数(COD和BOD) | 机器学习 | NA | 信号分解和深度学习 | 混合深度学习模型 | 时间序列数据 | 两个污水处理厂的数据 |
1259 | 2025-01-23 |
One-core neuron deep learning for time series prediction
2025-Feb, National science review
IF:16.3Q1
DOI:10.1093/nsr/nwae441
PMID:39830389
|
研究论文 | 本文提出了一种仅包含单个核心神经元的可解释'小模型'框架,即单核心神经元系统(OCNS),用于时间序列预测,旨在显著减少参数数量同时保持与现有'大模型'相当的性能 | 提出了一种仅包含单个核心神经元的深度学习框架,通过多延迟反馈设计,能够将输入特征向量/状态转换为一维时间序列/序列,理论上确保完全表示观测动态系统的状态 | 未提及具体的时间序列预测任务或数据集,可能限制了结果的普适性验证 | 探索在时间序列预测任务中构建参数少、性能优的深度学习框架 | 时间序列数据 | 机器学习 | NA | 深度学习 | 单核心神经元系统(OCNS) | 时间序列数据 | NA |
1260 | 2025-01-23 |
BananaImageBD: A comprehensive banana image dataset for classification of banana varieties and detection of ripeness stages in Bangladesh
2025-Feb, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2024.111239
PMID:39830620
|
研究论文 | 本文介绍了一个全面的香蕉图像数据集BananaImageBD,用于分类香蕉品种和检测成熟度阶段 | 该数据集包含了孟加拉国四种常见香蕉品种和四个关键成熟阶段的详细图像,具有推动精准农业、食品加工和供应链管理等领域自动化和高效流程发展的潜力 | 数据集仅限于孟加拉国的香蕉品种和成熟阶段,可能不适用于其他地区或品种 | 开发自动化和高效的香蕉品种分类和成熟度检测系统 | 孟加拉国的四种常见香蕉品种及其四个成熟阶段 | 计算机视觉 | NA | NA | 机器学习和深度学习模型 | 图像 | 2471张不同香蕉品种的原始图像和820张不同成熟阶段的原始图像,增强后的数据集分别包含7413张和2457张图像 |