本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 141 | 2025-10-07 |
Development of a pressure ulcer stage determination system for community healthcare providers using a vision transformer deep learning model
2025-Feb-14, Medicine
IF:1.3Q2
DOI:10.1097/MD.0000000000041530
PMID:39960905
|
研究论文 | 开发基于Vision Transformer深度学习模型的压疮分期系统,帮助社区医疗护理人员早期检测压疮 | 首次将Vision Transformer模型应用于压疮分期,相比传统CNN模型具有更高准确率,并结合物联网技术实现低计算资源下的图像分析 | 研究样本量有限(395张图像),仅来自3家医院,模型泛化能力需进一步验证 | 开发辅助社区护理人员早期识别压疮分期的计算机视觉系统 | 卧床患者的压疮图像 | 计算机视觉 | 压疮 | 深度学习,图像分析 | Vision Transformer | 图像 | 395张压疮图像,来自3家医院 | NA | PUC-ViT (Pressure Ulcer Cluster Vision Transformer) | ROC曲线值,准确率,F1分数 | 低计算资源环境,物联网技术 |
| 142 | 2025-10-07 |
Predicting the Price of Molecules Using Their Predicted Synthetic Pathways
2025-Feb, Molecular informatics
IF:2.8Q2
DOI:10.1002/minf.202400039
PMID:39887833
|
研究论文 | 提出一种利用分子预测合成路径来预测分子价格的深度学习模型RetroPriceNet | 首次提出考虑起始原料可用性和价格的分子价格预测方法,结合计算机辅助合成规划领域最新进展 | NA | 开发能够预测虚拟分子价格的模型以改进成本决策过程 | 虚拟分子及其合成路径 | 机器学习 | NA | 计算机辅助合成规划 | 深度学习 | 分子结构数据,合成路径数据 | NA | NA | RetroPriceNet | NA | NA |
| 143 | 2025-10-07 |
Retinal vascular alterations in cognitive impairment: A multicenter study in China
2025-Feb, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.14593
PMID:39988572
|
研究论文 | 通过深度学习模型分析中国三个地区认知障碍患者的视网膜血管变化特征 | 首次在中国多中心研究中利用深度学习模型VC-Net分割视网膜动静脉网络并提取36个血管特征 | 样本量有限,需要更大队列验证,且未深入探讨潜在机制 | 研究认知障碍患者的视网膜血管变化特征 | 轻度认知障碍(MCI)或阿尔茨海默病(AD)患者和健康对照者 | 数字病理 | 阿尔茨海默病 | 视网膜成像 | 深度学习 | 图像 | 176名认知障碍患者和264名对照者,来自上海、香港和宁夏三个中心 | NA | VC-Net | NA | NA |
| 144 | 2025-10-07 |
Diagnostic accuracy of radiomics and artificial intelligence models in diagnosing lymph node metastasis in head and neck cancers: a systematic review and meta-analysis
2025-Feb, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-024-03485-x
PMID:39527265
|
系统综述与荟萃分析 | 本系统综述与荟萃分析评估了影像组学和人工智能模型在头颈部癌淋巴结转移诊断中的准确性 | 首次通过荟萃分析系统评估不同影像模态(CT、MRI、PET/CT)和模型类型(深度学习与传统影像组学)在头颈部癌淋巴结转移诊断中的性能差异 | 大多数研究缺乏外部验证,所有分析仅限于内部验证集,可能影响结果的泛化能力 | 评估人工智能模型在头颈部癌淋巴结转移诊断中的准确性 | 头颈部癌患者的淋巴结转移 | 医学影像分析 | 头颈部癌 | 影像组学分析 | 深度学习模型, 传统影像组学模型 | 医学影像(CT、MRI、PET/CT) | 23项符合纳入标准的研究 | R环境 | NA | AUC, 敏感性, 特异性 | NA |
| 145 | 2025-10-07 |
Artificial Vision Systems for Fruit Inspection and Classification: Systematic Literature Review
2025-Feb-28, Sensors (Basel, Switzerland)
DOI:10.3390/s25051524
PMID:40096367
|
系统文献综述 | 本文通过系统文献综述方法分析水果检测与分类中的人工视觉系统应用 | 采用PRISMA方法对2015-2024年间56篇文献进行系统分析,全面总结水果分选在不同应用场景的技术配置 | 仅涵盖特定数据库(Web of Science和Scopus)的文献,时间范围限定为近十年 | 识别水果分选的不同应用领域、典型硬件配置及使用的技术与算法 | 水果分选与质量检测系统 | 计算机视觉 | NA | 计算机视觉、多光谱成像 | 深度学习模型 | 图像 | 56篇文献(2015-2024年) | NA | ResNet, VGG | NA | NA |
| 146 | 2025-10-07 |
A Review of Machine Learning and Deep Learning Methods for Person Detection, Tracking and Identification, and Face Recognition with Applications
2025-Feb-26, Sensors (Basel, Switzerland)
DOI:10.3390/s25051410
PMID:40096196
|
综述 | 本文系统回顾了人脸识别、人员检测与追踪技术的最新发展,重点分析了机器学习和深度学习方法在该领域的应用现状与挑战 | 采用PRISMA系统综述方法对142篇相关文献进行质量评估,揭示了从传统方法向深度学习方法的技术转变趋势 | 模型在多变环境条件(如不同光照和遮挡)、不同摄像机角度下的鲁棒性仍需提升,且存在隐私权相关的伦理法律问题 | 评估人员检测、追踪识别和人脸识别技术的最新发展状况 | 142篇相关学术论文 | 计算机视觉 | NA | 系统文献综述 | 机器学习,深度学习 | 文献数据 | 142篇相关论文 | NA | NA | 报告合规性,充分性,方法学质量 | NA |
| 147 | 2025-10-07 |
Attention Rings for Shape Analysis and Application to MRI Quality Control
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3047233
PMID:40406668
|
研究论文 | 提出一种基于注意力环的脑形状分析方法和集成模型,用于ABCD研究中的MRI质量自动控制 | 引入了用于脑形状分析的注意力环深度学习模型,并结合FSQC指标构建集成模型 | 准确率为72.62%,略低于集成模型的76%,性能仍有提升空间 | 开发自动化的MRI质量控制系统,以处理大规模神经影像数据 | 青少年脑认知发展研究(ABCD)中的脑部MRI数据 | 医学影像分析 | 神经发育疾病 | MRI, 深度学习 | 深度学习模型, 集成模型 | 脑部MRI图像, 皮质厚度, 曲率, 沟深, 表面积 | 超过20,000个MRI会话 | NA | 注意力环模型 | 准确率, 精确率, 召回率, F1分数 | NA |
| 148 | 2025-10-07 |
Multiple model visual feature embedding and selection method for an efficient oncular disease classification
2025-Feb-12, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-84922-y
PMID:39934192
|
研究论文 | 提出一种基于深度学习的眼疾自动分类系统,采用多模型视觉特征嵌入和选择方法 | 引入结合线性判别分析和先进神经网络分类器的两级特征选择框架,显著降低计算复杂度同时提升分类准确率 | 仅在ODIR数据集上进行验证,需要进一步临床实际环境测试 | 开发高效的眼部疾病自动分类系统以支持临床决策 | 眼部疾病患者眼底图像 | 计算机视觉 | 眼部疾病 | 眼底成像 | DNN, LSTM, BiLSTM | 图像 | 5000张患者眼底图像,分为8种眼疾类别 | TensorFlow, Keras | DenseNet201, EfficientNetB3, InceptionResNetV2 | 准确率, 精确率, 召回率 | NA |
| 149 | 2025-10-07 |
Computational Methods for Predicting Chemical Reactivity of Covalent Compounds
2025-Feb-10, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.4c01591
PMID:39823568
|
研究论文 | 本研究开发了预测共价化合物化学反应性的计算方法 | 整合机器学习、深度学习和量子力学计算评估共价化合物固有反应性,FP-Stack模型在测试集上表现出优异的相关性 | 研究主要针对半胱氨酸靶向共价化合物,未涵盖其他亲核氨基酸靶点 | 准确预测和调控共价化合物的反应性以促进共价药物发现 | 419种半胱氨酸靶向共价化合物及其反应性数据 | 机器学习 | NA | 量子力学计算 | 机器学习,深度学习 | 化学化合物数据 | 419种共价化合物 | NA | FP-Stack | Pearson相关系数,Spearman相关系数 | NA |
| 150 | 2025-10-07 |
Deep Learning-Based Tract Classification of Preoperative DWI Tractography Advances the Prediction of Short-Term Postoperative Language Improvement in Children With Drug-Resistant Epilepsy
2025-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3463481
PMID:39292577
|
研究论文 | 开发基于深度卷积神经网络的束路分类方法,通过术前弥散加权成像连接组预测儿童耐药性癫痫患者术后短期语言功能改善 | 扩展了基于DCNN的束路分类方法,利用高质量全脑弥散加权成像连接组数据库,显著提高了连接标记的可重复性和术后语言改善预测准确率 | 研究样本量有限,需要在更大规模队列中验证方法的普适性 | 提高儿童耐药性癫痫患者术后语言功能改善的预测准确性 | 患有耐药性癫痫的儿童患者 | 医学影像分析 | 癫痫 | 弥散加权成像,束路成像 | DCNN | 医学影像 | 独立验证队列 | NA | 深度卷积神经网络 | 准确率,F统计量 | NA |
| 151 | 2025-10-07 |
Deep Learning for Pediatric Sleep Staging From Photoplethysmography: A Transfer Learning Approach From Adults to Children
2025-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3470534
PMID:39331540
|
研究论文 | 本研究采用迁移学习方法,将基于成人数据训练的深度学习模型应用于儿童光电容积脉搏波睡眠分期 | 首次将成人领域的深度学习模型通过迁移学习应用于儿童睡眠分期,解决了儿童数据稀缺的问题 | 对5岁以下儿童性能下降,需要覆盖更广年龄范围的儿科数据集 | 开发基于光电容积脉搏波的自动化儿童睡眠分期算法 | 儿童睡眠数据,特别是5-10岁年龄段 | 机器学习 | 睡眠障碍 | 光电容积脉搏波 | 深度学习 | 时间序列数据 | CHAT数据集(儿童腺样体扁桃体切除术试验)的80%用于训练,包含5-10岁儿童记录 | NA | NA | Cohen's Kappa | NA |
| 152 | 2025-10-07 |
TFTL: A Task-Free Transfer Learning Strategy for EEG-Based Cross-Subject and Cross-Dataset Motor Imagery BCI
2025-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3474049
PMID:39365711
|
研究论文 | 提出一种无需任务校准的迁移学习策略TFTL,用于基于EEG的跨被试和跨数据集运动想象脑机接口 | 首次提出任务无关的迁移学习策略,仅使用目标被试的静息态数据即可构建个性化模型,实现零校准试验 | 未明确说明模型在不同疾病人群中的泛化能力 | 减少运动想象脑机接口的校准时间并实现多中心数据协同建模 | 脑电信号数据 | 机器学习 | 神经康复疾病 | EEG脑电信号采集 | 深度学习 | 脑电信号 | 五个数据集(BCIC IV Dataset 2a, Dataset 1, Physionet MI, Dreyer 2023, OpenBMI) | NA | ShallowConvNet, EEGNet, TCNet-Fusion | 准确率提升 | NA |
| 153 | 2025-10-07 |
A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma
2025-Feb, Radiology. Artificial intelligence
DOI:10.1148/ryai.230544
PMID:39812582
|
研究论文 | 开发基于连续MRI和深度学习的预后模型,用于预测局部晚期鼻咽癌患者的生存率 | 首次将治疗前后的连续MRI与图卷积神经网络结合,构建放射组学-临床预后模型 | 回顾性研究设计,样本量有限 | 预测局部晚期鼻咽癌患者的无病生存期 | 1039例局部晚期鼻咽癌患者 | 医学影像分析 | 鼻咽癌 | MRI成像 | 图卷积神经网络 | 医学影像 | 1039例患者(779男,260女,平均年龄44±11岁) | NA | 图卷积神经网络 | C-index | NA |
| 154 | 2025-05-23 |
Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study
2025-Feb-28, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00845-5
PMID:40022261
|
研究论文 | 本研究通过结合放射组学和深度学习特征构建融合模型,用于脑膜瘤窦侵犯的术前精确诊断 | 首次构建了结合放射组学和多种深度学习特征(VGG、ResNet、DenseNet)的融合模型,并在多中心数据集中验证了其优越的诊断性能 | 研究为回顾性设计,需要前瞻性研究进一步验证模型的临床适用性 | 开发脑膜瘤窦侵犯的术前精确诊断方法 | 601例经手术病理证实的脑膜瘤患者 | 数字病理 | 脑膜瘤 | MRI影像分析 | 随机森林(RF)、VGG、ResNet、DenseNet | 医学影像 | 601例患者(训练集、内部验证集和独立外部验证集) | NA | NA | NA | NA |
| 155 | 2025-05-23 |
Enhancing Domain Diversity of Transfer Learning-Based SSVEP-BCIs by the Reconstruction of Channel Correlation
2025-02, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3458389
PMID:39255081
|
研究论文 | 本研究提出了一种名为通道相关性重建(RCC)的数据增强方法,用于优化基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中迁移学习的源域数据利用 | 通过概率混合源域协方差矩阵的特征向量矩阵来重建训练样本,操纵通道相关性以隐式创建新的合成域,从而增加源域多样性 | NA | 提高SSVEP-BCI系统中迁移学习的性能 | 稳态视觉诱发电位(SSVEP)脑机接口系统 | 脑机接口 | NA | 迁移学习(预训练和微调) | 深度学习模型 | 脑电信号数据 | NA | NA | NA | NA | NA |
| 156 | 2025-10-07 |
Exploring a decade of deep learning in dentistry: A comprehensive mapping review
2025-Feb-19, Clinical oral investigations
IF:3.1Q1
DOI:10.1007/s00784-025-06216-5
PMID:39969623
|
综述 | 本系统图谱综述探讨了深度学习在牙科领域十年间的应用现状、趋势和临床意义 | 首次对牙科领域深度学习研究进行系统性图谱分析,涵盖2012-2023年间1007项研究,揭示了技术应用模式和临床专业分布 | 主要依赖监督学习方法(95.2%),需要大量标注数据,且多模态数据融合研究相对不足 | 系统梳理深度学习在牙科领域的应用现状和发展趋势 | 2012-2023年间发表的牙科深度学习相关研究文献 | 数字病理 | 牙科疾病 | 深度学习 | CNN | 影像数据 | 1007项纳入研究(从21242篇文献中筛选) | NA | 卷积神经网络 | NA | NA |
| 157 | 2025-10-07 |
phyddle: software for exploring phylogenetic models with deep learning
2025-Feb-28, bioRxiv : the preprint server for biology
DOI:10.1101/2024.08.06.606717
PMID:39149349
|
研究论文 | 介绍用于通过深度学习探索系统发育模型的软件phyddle | 开发了首个基于流水线的软件,使用无似然深度学习方法来执行系统发育建模任务 | NA | 解决缺乏易处理似然函数的系统发育模型推断问题 | 系统发育树 | 机器学习 | NA | 深度学习 | 深度学习模型 | 系统发育数据 | NA | NA | NA | 准确性, 覆盖率测试 | NA |
| 158 | 2025-10-07 |
Deep Convolutional Neural Network for Automated Staging of Periodontal Bone Loss Severity on Bite-wing Radiographs: An Eigen-CAM Explainability Mapping Approach
2025-Feb, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01218-3
PMID:39147888
|
研究论文 | 本研究开发了一种基于深度学习的自动化系统,用于对咬翼片X光图像中的牙周骨丧失严重程度进行分期 | 首次将YOLOv8深度学习模型与Eigen-CAM可解释性热图相结合,用于牙周骨丧失的自动分期 | 对轻度和中度骨丧失的分类准确性相对较低,因为这些损伤在图像中不如正常和严重骨丧失清晰可见 | 开发自动化系统对牙周骨丧失严重程度进行分期 | 咬翼片X光图像中的牙周骨丧失 | 计算机视觉 | 牙周病 | X射线成像 | CNN | 图像 | 1752张咬翼片图像 | PyTorch | YOLOv8 | 准确率, 精确率, 召回率, F1分数 | NA |
| 159 | 2025-05-18 |
Task-specific deep learning-based denoising for UHR cardiac PCD-CT adaptive to imaging conditions and patient characteristics: Impact on image quality and clinical diagnosis and quantitative assessment
2025-Feb, Proceedings of SPIE--the International Society for Optical Engineering
DOI:10.1117/12.3047283
PMID:40370652
|
研究论文 | 本文开发了一种基于卷积神经网络(CNN)的去噪算法,用于优化超高分辨率(UHR)光子计数探测器(PCD) CT的心脏成像,以适应不同的成像条件和患者特征 | 提出了一种任务特定的深度学习去噪方法,能够根据不同诊断任务、患者特征和扫描协议自适应地优化图像质量 | 研究主要关注心脏CT成像,未涉及其他临床应用领域 | 优化UHR PCD-CT在心脏成像中的图像质量,提高冠状动脉狭窄的定量评估准确性 | UHR PCD-CT心脏图像 | 数字病理 | 心血管疾病 | 光子计数探测器CT(PCD-CT) | CNN | 医学影像 | 按水等效直径分组的患者(小:<300mm, 中:300-320mm, 大:>320mm) | NA | NA | NA | NA |
| 160 | 2025-05-17 |
Impact of deep learning on pediatric elbow fracture detection: a systematic review and meta-analysis
2025-Feb-20, European journal of trauma and emergency surgery : official publication of the European Trauma Society
IF:1.9Q2
DOI:10.1007/s00068-025-02779-w
PMID:39976732
|
meta-analysis | 本研究通过系统回顾和荟萃分析评估了深度学习模型在儿童肘部骨折检测中的性能 | 首次系统评估了深度学习模型在儿童肘部骨折检测中的表现,并分析了预处理技术和模型架构选择对性能的影响 | 仅纳入了6项符合标准的研究,样本量有限 | 评估深度学习模型在儿童肘部骨折检测中的诊断性能 | 0-16岁儿童的肘部骨折 | digital pathology | pediatric fracture | deep learning | ResNet等深度学习模型 | 医学影像数据 | 22项研究中的6项符合纳入标准(具体样本量未明确说明) | NA | NA | NA | NA |