本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2025-06-03 |
A systematic review of deep learning in MRI-based cerebral vascular occlusion-based brain diseases
2025-Mar-05, Neuroscience
IF:2.9Q2
|
综述 | 本文系统回顾了2020年至2024年间发表的61项基于MRI的研究,探讨深度学习在诊断脑血管闭塞相关疾病中的作用 | 比较了基于CNN和ViT的方法,强调了U-Net变体和基于transformer的模型在提高临床应用中可靠性的潜力 | 讨论了数据隐私和算法可解释性等挑战,以及数据集的充分性和多样性问题 | 评估深度学习在MRI诊断脑血管闭塞相关疾病中的成功与局限 | 脑血管闭塞和中风等神经系统疾病 | 医学影像 | 脑血管疾病 | MRI | CNN, Vision Transformer (ViT), U-Net | MRI图像 | 61项研究 |
2 | 2025-06-03 |
Artificial intelligence in early screening for esophageal squamous cell carcinoma
2025-Mar, Best practice & research. Clinical gastroenterology
DOI:10.1016/j.bpg.2025.102004
PMID:40451647
|
review | 本文综述了人工智能在食管鳞状细胞癌早期筛查中的变革性作用 | AI技术(如机器学习、深度学习和迁移学习)在优化筛查方式、提高成本效益及整合多源数据方面展现出显著潜力 | 数据集变异性、模型泛化能力、算法透明度及伦理法律问题仍需解决 | 探讨AI如何革新食管鳞状细胞癌的早期筛查 | 食管鳞状细胞癌(ESCC)高风险人群 | digital pathology | esophageal squamous cell carcinoma | machine learning, deep learning, transfer learning, liquid biopsy | NA | imaging, genomic, clinical data | NA |
3 | 2025-06-01 |
Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy
2025-Mar-15, Journal for immunotherapy of cancer
IF:10.3Q1
DOI:10.1136/jitc-2024-011149
PMID:40090670
|
research paper | 本研究开发并验证了一种基于体素级放射组学和深度学习的模型,用于预测食管鳞状细胞癌患者在新辅助免疫治疗联合化疗后的病理完全缓解 | 采用新型体素级放射组学方法结合深度学习模型Vision-Mamba,显著提高了预测病理完全缓解的准确性和稳健性 | 研究为回顾性设计,需要前瞻性研究进一步验证模型的临床适用性 | 开发高精度预测模型以指导食管鳞状细胞癌患者的个体化治疗决策 | 接受新辅助免疫治疗联合化疗的食管鳞状细胞癌患者 | digital pathology | esophageal squamous cell carcinoma | CT imaging | Vision-Mamba, 3D-ResNet, Vision Transformer | CT images | 741例患者(469例训练集,118例内部验证集,154例外部验证集) |
4 | 2025-06-01 |
A comprehensive dataset of magnetic resonance enterography images with intestinal segment annotations
2025-Mar-11, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04760-z
PMID:40069172
|
研究论文 | 本文介绍了一个包含肠道分段注释的磁共振小肠造影(MRE)图像的综合数据集,旨在支持炎症性肠病(IBD)的AI研究 | 创建了一个高质量、公开可用的全肠道分段MR数据集,并验证了几种最先进的分割方法在该数据集上的效率 | 数据集仅包含114名IBD患者的MRE数据,样本量相对有限 | 为IBD的AI研究提供高质量的数据集和基准结果 | 炎症性肠病(IBD)患者的磁共振小肠造影(MRE)图像 | 数字病理 | 炎症性肠病 | 磁共振小肠造影(MRE) | 深度学习分割方法 | 图像 | 114名IBD患者的MRE数据 |
5 | 2025-06-01 |
Evaluation of enzyme activity predictions for variants of unknown significance in Arylsulfatase A
2025-Mar, Human genetics
IF:3.8Q2
DOI:10.1007/s00439-025-02731-3
PMID:40055237
|
研究论文 | 评估机器学习方法在预测Arylsulfatase A基因未知意义变异(VUS)酶活性方面的能力 | 展示了使用标准机器学习工具训练的模型在预测VUS功能效应方面的优越性能,并发现深度学习方法的预测性能有显著提升 | 仅评估了ARSA基因的219个错义VUS,样本量有限 | 评估机器学习方法在预测基因变异功能效应方面的准确性 | Arylsulfatase A (ARSA)基因的219个错义VUS | 机器学习 | 遗传病 | 机器学习 | 深度学习 | 基因变异数据 | 219个错义VUS |
6 | 2025-05-31 |
NLP-enriched social determinants of health improve prediction of suicide death among the Veterans
2025-Mar-31, Research square
DOI:10.21203/rs.3.rs-5067562/v1
PMID:40235516
|
研究论文 | 本研究探讨了通过自然语言处理(NLP)提取的社会和行为健康决定因素(SBDH)如何提高退伍军人精神病出院后自杀死亡的预测准确性 | 结合NLP提取的SBDH和ICD编码的SBDH,显著提升了自杀死亡预测模型的性能、校准和公平性 | 研究仅针对美国退伍军人群体,可能无法推广到其他人群 | 提高精神病出院患者自杀死亡的预测准确性 | 197,581名美国退伍军人,共414,043次精神病出院记录 | 自然语言处理 | 精神疾病 | NLP, ICD编码 | 集成机器学习模型, TransformEHR(基于transformer的深度学习模型) | 文本(临床笔记), 结构化数据(ICD编码) | 197,581名退伍军人,414,043次出院记录 |
7 | 2025-05-31 |
Deep Learning of Proteins with Local and Global Regions of Disorder
2025-Mar-29, ArXiv
PMID:40034137
|
研究论文 | 提出了一种新的机器学习方法IDPForge,用于生成全原子水平的内在无序蛋白质(IDPs)和内在无序区域(IDRs)的结构集合 | IDPForge利用transformer蛋白质语言扩散模型,无需序列特异性训练或从粗粒度表示进行反向转换,即可生成与实验数据良好一致的IDP/IDR构象集合 | 未明确提及具体局限性 | 改进对内在无序蛋白质和区域的结构预测 | 内在无序蛋白质(IDPs)和内在无序区域(IDRs) | 机器学习 | NA | transformer蛋白质语言扩散模型 | transformer | 蛋白质序列 | NA |
8 | 2025-05-31 |
Deep neural networks excel in COVID-19 disease severity prediction-a meta-regression analysis
2025-Mar-26, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95282-6
PMID:40133706
|
meta-analysis | 该研究通过元回归分析评估了深度神经网络在COVID-19疾病严重程度预测中的优越性 | 首次使用MetaForest算法识别工具性能的相关混杂因素,并通过混合效应元回归模型比较了线性、机器学习和深度学习方法 | 88%的研究存在高偏倚风险,主要由于数据分析的缺陷 | 评估COVID-19严重程度预测工具的性能,指导临床医生选择最佳工具并优化资源管理 | 住院的COVID-19患者 | 机器学习 | COVID-19 | MetaForest算法, 混合效应元回归模型 | Neural Networks, 机器学习方法 | 临床、实验室和影像数据 | 约280万患者,来自430项独立评估 |
9 | 2025-05-31 |
AI-Derived Blood Biomarkers for Ovarian Cancer Diagnosis: Systematic Review and Meta-Analysis
2025-Mar-24, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/67922
PMID:40126546
|
meta-analysis | 本文通过系统综述和荟萃分析评估了AI衍生的血液生物标志物在卵巢癌诊断中的研究质量和有效性 | 首次对AI在卵巢癌血液生物标志物发现中的诊断价值进行了系统评估,并比较了不同AI算法和样本类型的性能差异 | 纳入研究之间存在异质性,且部分研究缺乏外部验证 | 评估AI衍生的血液生物标志物在卵巢癌诊断中的有效性 | 卵巢癌患者 | 数字病理 | 卵巢癌 | AI算法(包括机器学习和深度学习) | 机器学习 vs 深度学习 | 血液生物标志物数据 | 40项研究 |
10 | 2025-05-31 |
Explainable AI for Intraoperative Motor-Evoked Potential Muscle Classification in Neurosurgery: Bicentric Retrospective Study
2025-Mar-24, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/63937
PMID:40127441
|
研究论文 | 本研究开发并评估了用于术中运动诱发电位(MEP)肌肉分类的机器学习方法,并利用可解释人工智能(XAI)技术识别关键信号特征 | 结合机器学习与可解释人工智能技术,首次在双中心设置下验证MEP信号分类模型,并识别出频率成分和峰值潜伏期等关键特征 | 研究为回顾性设计,样本量相对有限(151例训练手术/58例测试手术),且仅针对四种特定肌肉 | 开发可靠的MEP肌肉分类模型以提高神经外科手术患者安全性,并探索影响分类的关键信号特征 | 幕上神经外科手术中四种肌肉(指伸肌、拇短展肌、胫骨前肌和拇展肌)的运动诱发电位信号 | 数字病理 | 神经系统疾病 | 运动诱发电位监测(IONM) | 随机森林(RF)、1D-CNN和2D-CNN | 时间序列生物电信号 | 训练集:36,992个MEP(151例手术);测试集:24,298个MEP(58例手术) |
11 | 2025-05-31 |
Establishment of a deep-learning-assisted recurrent nasopharyngeal carcinoma detecting simultaneous tactic (DARNDEST) with high cost-effectiveness based on magnetic resonance images: a multicenter study in an endemic area
2025-Mar-24, Cancer imaging : the official publication of the International Cancer Imaging Society
IF:3.5Q1
DOI:10.1186/s40644-025-00853-5
PMID:40128777
|
研究论文 | 本研究探讨了利用未增强磁共振图像(MRI)检测局部复发性鼻咽癌(rNPC)的可行性,并通过深度学习模型优化了随访的分层管理策略 | 开发了一种基于深度学习的复发性鼻咽癌同步检测策略(DARNDEST),结合了3D DenseNet和ResNet框架,提高了检测的准确性和敏感性 | 特异性相比T1_T2模型有所降低,且研究结果基于假设的1000名患者队列 | 优化复发性鼻咽癌的检测方法,提高随访管理的效率和经济效益 | 局部复发性鼻咽癌(rNPC)患者 | 数字病理 | 鼻咽癌 | MRI(T1WI, T2WI, T1WIC) | 3D DenseNet, ResNet | 图像 | 假设队列1000名患者(内部和外部测试集) |
12 | 2025-05-31 |
A Two-Stage Lightweight Deep Learning Framework for Mass Detection and Segmentation in Mammograms Using YOLOv5 and Depthwise SegNet
2025-Mar-14, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01471-0
PMID:40087224
|
研究论文 | 提出了一种轻量级的两阶段深度学习框架,用于在乳腺X光片中检测和分割肿块,确保医疗数据隐私 | 结合YOLOv5和深度可分离卷积的SegNet架构,创建了一个参数少、推理速度快的轻量级模型,可直接在用户浏览器中运行 | 在CBIS-DDSM数据集上的mAP@50为50.3%,性能仍有提升空间 | 开发一个高效且保护隐私的乳腺癌肿块检测和分割解决方案 | 乳腺X光片中的肿块 | 计算机视觉 | 乳腺癌 | 深度学习 | YOLOv5, SegNet | 图像 | CBIS-DDSM和INbreast数据集 |
13 | 2025-05-31 |
Tumor cell villages define the co-dependency of tumor and microenvironment in liver cancer
2025-Mar-12, bioRxiv : the preprint server for biology
DOI:10.1101/2025.03.07.642107
PMID:40161587
|
研究论文 | 该研究通过空间单细胞成像和单细胞RNA测序分析了50个肿瘤生物样本中的200多万个细胞,开发了一种基于深度学习的策略来空间映射肿瘤细胞状态及其周围结构 | 提出了空间动态网络(SDN)的概念,揭示了肿瘤细胞状态如何组织成独特的集群('村庄'),并展示了这些村庄与肿瘤微环境之间的分子共依赖性 | 研究仅针对肝癌,未涉及其他癌症类型 | 理解肿瘤空间景观及其对肿瘤侵袭性的影响 | 肝癌肿瘤细胞及其微环境 | 数字病理学 | 肝癌 | 空间单细胞成像, 单细胞RNA测序 | 深度学习 | 图像, 基因表达数据 | 50个肿瘤生物样本中的200多万个细胞 |
14 | 2025-05-31 |
Deep Learning Study of Alkaptonuria Spinal Disease Assesses Global and Regional Severity and Detects Occult Treatment Status
2025-Mar-12, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.03.11.25323762
PMID:40162283
|
研究论文 | 本研究探讨了深度学习在罕见疾病碱尿症(AKU)脊柱病变中的应用,评估了其识别疾病整体和局部严重程度及检测隐匿治疗状态的能力 | 首次将深度学习应用于罕见疾病碱尿症的脊柱影像分析,并成功检测出患者的隐匿治疗状态 | 真空椎间盘现象的预测一致性较低(41-90%) | 评估深度学习在罕见疾病医学影像分析中的有效性 | 碱尿症患者的颈椎和腰椎X光片 | 数字病理 | 碱尿症 | 深度学习 | DL | 医学影像 | 未明确说明样本数量,但包含颈椎和腰椎X光片 |
15 | 2025-05-31 |
Performance Improvement of a Natural Language Processing Tool for Extracting Patient Narratives Related to Medical States From Japanese Pharmaceutical Care Records by Increasing the Amount of Training Data: Natural Language Processing Analysis and Validation Study
2025-Mar-04, JMIR medical informatics
IF:3.1Q2
DOI:10.2196/68863
PMID:40053805
|
research paper | 该研究旨在通过增加训练数据量,提高从日语药学护理记录中提取患者叙述相关医疗信息的自然语言处理工具的性能 | 开发了一个针对日语患者叙述的高性能NLP系统,并通过逐步增加训练数据量来考察性能提升 | 系统在分析药学护理记录之外的其他来源文本(如病例报告)时性能较低,表明其更适用于药学护理记录的主观数据分析 | 开发一个高性能NLP系统,用于从患者叙述中提取临床信息 | 日语药学护理记录中的患者主观叙述文本 | natural language processing | NA | NLP, deep learning | BERT-CRF | text | 12,004条记录(来自6,559个案例) |
16 | 2025-05-31 |
Graph neural networks for single-cell omics data: a review of approaches and applications
2025-Mar-04, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf109
PMID:40091193
|
综述 | 本文系统回顾了图神经网络(GNNs)在单细胞组学数据分析中的应用及其六种变体 | 首次系统总结了GNNs在单细胞组学数据分析中的107个成功应用案例,并整理了77个公开可用的单细胞数据集 | 当前研究可能存在方法学上的不足,需要未来进一步探索 | 深化GNNs在单细胞组学数据分析中的应用 | 单细胞组学数据 | 机器学习 | NA | 单细胞测序技术 | GNN及其六种变体 | 单细胞组学数据(表观基因组学、转录组学、空间转录组学、蛋白质组学和多组学) | 总结了77个公开可用的单细胞数据集 |
17 | 2025-05-31 |
Prediction of mortality in hemodialysis patients based on autoencoders
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105744
PMID:39642591
|
研究论文 | 本研究提出了一种基于自动编码器的血液透析患者死亡率预测模型,利用短期数据评估患者30至450天的死亡风险 | 通过自动编码器处理数据不平衡和缺失特征问题,设计了自适应特征提取模块,能够利用短期数据进行无监督学习并重建缺失特征 | 模型在短期预测中表现优异,但长期预测效果可能受限 | 解决血液透析患者短期数据不平衡和特征缺失问题,实现准确的死亡率风险评估 | 终末期肾病患者(ESRD)接受血液透析(HD)治疗的患者 | 机器学习 | 肾脏疾病 | 自动编码器 | autoencoder | 临床数据 | NA |
18 | 2025-05-31 |
Convolutional neural networks for automatic MR classification of myocardial iron overload in thalassemia major patients
2025-Mar, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11245-x
PMID:39658686
|
研究论文 | 开发深度学习模型用于从T2*多回波MR图像中自动分类心肌铁过载 | 开发了两种2D卷积神经网络(MS-HippoNet和SS-HippoNet)用于多切片和单切片分析,实现了对心肌铁过载水平的自动分类,性能与放射科医生间的观察一致性相当 | 研究仅回顾性分析了特定数据库中的患者数据,未涉及更广泛的人群验证 | 开发自动分类心肌铁过载的深度学习模型 | 496名重型地中海贫血患者的心脏T2*多回波MR图像 | 数字病理 | 心血管疾病 | T2*多回波MR成像 | CNN | 图像 | 823张心脏T2*多切片多回波MR图像,来自496名患者(285名女性,占57%) |
19 | 2025-05-31 |
Utilising routinely collected clinical data through time series deep learning to improve identification of bacterial bloodstream infections: a retrospective cohort study
2025-03, The Lancet. Digital health
DOI:10.1016/j.landig.2025.01.010
PMID:40015765
|
研究论文 | 本研究利用常规收集的临床数据,通过时间序列深度学习技术,提高了细菌性血流感染的识别能力 | 使用LSTM模型分析时间序列数据,显著提高了对血流感染的预测准确性 | 研究为回顾性队列研究,可能存在数据偏差 | 开发和评估利用医疗数据预测住院患者血流感染的模型 | 住院患者 | 机器学习 | 血流感染 | 血液培养 | LSTM, logistic regression | 临床数据 | 20850名患者(训练集15212名,测试集5638名) |
20 | 2025-05-31 |
Transparency and Representation in Clinical Research Utilizing Artificial Intelligence in Oncology: A Scoping Review
2025-Mar, Cancer medicine
IF:2.9Q2
DOI:10.1002/cam4.70728
PMID:40059400
|
综述 | 本文通过范围综述评估了在肿瘤学领域利用人工智能(AI)的临床研究中人口统计数据报告的透明度和参与者的多样性 | 首次系统评估了AI在肿瘤学临床研究中人口统计数据报告的透明度和多样性,揭示了种族和民族数据报告的不足 | 仅纳入了2016-2021年间发表的研究,且仅通过PubMed数据库检索,可能存在遗漏 | 评估AI在肿瘤学临床研究中人口统计数据报告的透明度和参与者多样性 | 2016-2021年间发表的利用AI的肿瘤学临床研究 | 数字病理学 | 肿瘤学 | NA | NA | 临床研究数据 | 220项研究(其中118项符合条件) |