深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1439 篇文献,本页显示第 181 - 200 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
181 2025-05-18
Nuclear pleomorphism in canine cutaneous mast cell tumors: Comparison of reproducibility and prognostic relevance between estimates, manual morphometry, and algorithmic morphometry
2025-03, Veterinary pathology IF:2.3Q1
research paper 本研究比较了犬皮肤肥大细胞肿瘤(ccMCTs)中核多形性评估的不同方法,包括病理学家估计、手动形态测量和基于深度学习的自动形态测量 开发了基于深度学习的自动形态测量方法,并验证了分层抽样12个核的手动形态测量方法的实用性 需要进一步研究验证结果、确定算法间可重复性和算法鲁棒性,并探索整个肿瘤切片中核特征的异质性 探索犬皮肤肥大细胞肿瘤核评估方法的局限性并开发替代形态测量解决方案 犬皮肤肥大细胞肿瘤(ccMCTs) digital pathology mast cell tumors deep learning-based segmentation NA image 96例ccMCTs
182 2025-05-17
Clinical implications of deep learning based image analysis of whole radical prostatectomy specimens
2025-Mar-31, Scientific reports IF:3.8Q1
研究论文 本研究评估了基于深度学习的图像分析(DLIA)算法在前列腺癌根治术(RP)标本中Gleason分级和肿瘤定量的临床应用和预后价值 首次将DLIA算法应用于全RP标本的Gleason分级和肿瘤定量,并评估其临床可行性和预后价值 研究样本量相对有限(992例患者),且DLIA算法与病理学家评估的一致性仅为中等水平(Cohen's kappa: 0.374) 提高前列腺癌诊断的准确性和临床决策支持 前列腺癌根治术标本 数字病理学 前列腺癌 深度学习图像分析 DLIA算法 H&E染色数字切片图像 992例患者的29,646张数字化H&E染色切片
183 2025-05-17
A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images
2025-Mar-31, BMC medical informatics and decision making IF:3.3Q2
research paper 提出了一种新型深度学习框架,用于从无线胶囊内窥镜图像中分类和定位胃肠道疾病 融合了两种新型架构SC-DSAN和CNN-GRU,采用深度连接层进行网络级融合,避免了特征级融合的计算成本,并利用贝叶斯优化和熵控海洋捕食者算法进行动态超参数调优和特征选择 未来工作将探索其对其他数据集的适应性,并优化其计算复杂性以实现更广泛的部署 解决胃肠道疾病分类和定位中的挑战,如类间和类内相似性、类别不平衡和计算效率低下 无线胶囊内窥镜图像 computer vision gastrointestinal cancer deep learning SC-DSAN, CNN-GRU, SWNN image Kvasir-V1和Kvasir-V2数据集
184 2025-05-17
Ant-Inspired Ion Gel Sensor for Dual-Mode Detection of Force and Humidity via Magnetic Induction
2025-03-28, ACS sensors IF:8.2Q1
research paper 介绍了一种受蚂蚁感官机制启发的双模式离子凝胶传感器,能够同时检测环境湿度和压力 采用磁感应技术开发的双模式传感器,结合了湿度传感器和压力传感器的高灵敏度和宽范围检测能力,并通过深度学习算法实现高精度物体识别 未明确提及传感器的长期稳定性测试或在极端环境下的性能表现 开发多功能、高灵敏度、宽范围和耐用的柔性传感器,用于智能传感领域 环境湿度和压力的检测,以及人体生理信号和物体识别 智能传感 NA 磁感应技术,深度学习算法 NA 湿度信号,压力信号,生理信号 未明确提及具体样本数量,但涉及人体生理信号测试和物体识别实验
185 2025-05-17
Penalized factorial regression as a flexible and computationally attractive reaction norm model for prediction in the presence of GxE
2025-Mar-28, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
研究论文 本文提出了一种惩罚性因子回归方法,作为预测基因型与环境互作(GxE)的计算高效替代方案 该方法在预测精度上与基于核方法和深度学习的替代方法相当,但计算需求和耗时明显更低 仅在小麦和玉米两个代表性数据集上进行了验证,未在其他作物或更大规模数据上测试 解决植物育种和遗传学中长期存在的挑战,即在存在基因型与环境互作的情况下预测新环境中的产量 小麦和玉米的候选品种 植物育种与遗传学 NA 惩罚性因子回归 线性反应规范模型 基因型与环境互作数据 两个代表性数据集(小麦和玉米)
186 2025-05-17
[Research progress in mutation effect prediction based on protein language models]
2025-Mar-25, Sheng wu gong cheng xue bao = Chinese journal of biotechnology
综述 本文综述了基于蛋白质语言模型(PLMs)的蛋白质突变效应预测的研究进展 总结了PLMs在预测蛋白质突变效应中的应用,包括序列模型、结构模型及序列与结构结合模型,并分析了无监督和监督学习在模型训练中的应用 当前面临的主要挑战包括高质量数据集的获取和数据噪声的处理 推动蛋白质突变效应预测的进一步发展 蛋白质突变效应预测 生物信息学 NA 蛋白质语言模型(PLMs) 序列模型、结构模型、序列与结构结合模型 蛋白质序列和结构数据 NA
187 2025-05-17
[Intelligent mining, engineering, and de novo design of proteins]
2025-Mar-25, Sheng wu gong cheng xue bao = Chinese journal of biotechnology
综述 本文综述了人工智能在蛋白质发现、评估、工程和设计方面的最新研究进展 探讨了人工智能在蛋白质工程和设计中的应用及其对生物制造的潜在影响 未提及具体的技术限制或数据局限性 探索和改造酶以适应特定的生物制造过程 蛋白质,特别是酶 机器学习 NA 机器学习和深度学习算法 NA 生物信息学数据 NA
188 2025-05-17
Development and validation of automated three-dimensional convolutional neural network model for acute appendicitis diagnosis
2025-Mar-05, Scientific reports IF:3.8Q1
研究论文 开发并验证了一种基于3D卷积神经网络(CNN)的自动化诊断框架,用于急性阑尾炎的诊断 提出了一个全自动的诊断框架IA模型,能够自动提取阑尾解剖位置的感兴趣区域(VOI),并使用两阶段二元算法进行预测 模型在第二阶段区分简单和复杂阑尾炎的准确率为76.1%,仍有提升空间 开发一种快速、准确的术前影像诊断工具,以辅助急诊护理中的手术决策 腹痛患者的增强腹部盆腔CT图像 计算机视觉 阑尾炎 3D卷积神经网络(CNN) ResNet, DenseNet, EfficientNet 图像 NA
189 2025-05-17
Inferring gene regulatory networks from time-series scRNA-seq data via GRANGER causal recurrent autoencoders
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种名为GRANGER的无监督深度学习方法,用于从时间序列单细胞RNA测序数据中推断基因调控网络 整合了循环变分自编码器、GRANGER因果性、稀疏性诱导惩罚和基于负二项式的损失函数,显著提高了处理时间序列scRNA-seq数据的能力 NA 从时间序列单细胞RNA测序数据中准确推断基因调控网络 小鼠全脑scRNA-seq数据中的五个转录调节因子(E2f7, Gbx1, Sox10, Prox1, Onecut2) 生物信息学 NA scRNA-seq 循环变分自编码器 时间序列单细胞RNA测序数据 多个流行基准数据集和小鼠全脑scRNA-seq数据
190 2025-05-17
Kolmogorov-Arnold networks for genomic tasks
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
research paper 本文研究了Kolmogorov-Arnold网络(KANs)在基因组任务中替代多层感知机(MLPs)的潜力 首次将KANs整合到基因组任务的深度学习模型中,并测试了线性KANs(LKANs)和卷积KANs(CKANs)的性能 CKANs在参数规模较大时表现不佳,且KANs在不同深度学习架构中的潜力需要进一步研究 探索KANs在基因组任务中的性能表现 基因组序列的分类与生成 machine learning NA deep learning Kolmogorov-Arnold networks (KANs), linear KANs (LKANs), convolutional KANs (CKANs) genomic sequences 三个基因组基准数据集:Genomic Benchmarks, Genome Understanding Evaluation, Flipon Benchmark
191 2025-05-17
DOMSCNet: a deep learning model for the classification of stomach cancer using multi-layer omics data
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
研究论文 提出了一种名为DOMSCNet的深度学习模型,用于利用多层组学数据对胃癌进行分类 提出了一种混合特征选择(HFS)技术和基于深度循环神经网络的DOMSCNet模型,能够处理多层组学数据并有效提取信息特征 未明确提及具体局限性 改进胃癌的分类方法,支持癌症的分子过程理解和临床诊断 胃癌的多层组学数据 机器学习 胃癌 NGS 深度循环神经网络(DOMSCNet) 多层组学数据 使用了八个外部数据集进行验证
192 2025-05-17
Data imbalance in drug response prediction: multi-objective optimization approach in deep learning setting
2025-Mar-04, Briefings in bioinformatics IF:6.8Q1
research paper 该研究提出了一种多目标优化方法,用于解决药物反应预测中的数据集不平衡问题,以提高深度学习模型的泛化能力 通过构建多目标优化损失函数(Multi-Objective Optimization Regularized by Loss Entropy)并将其应用于深度学习模型,解决了药物反应预测中的数据集不平衡问题 数据深度仍然不足,与计算机视觉或自然语言处理等领域相比,限制了当前的学习能力 提高药物反应预测模型的泛化能力 药物反应预测模型 machine learning NA deep learning Deep Learning genomic data, drug screening data NA
193 2025-05-17
Clinical applications of deep learning in neuroinflammatory diseases: A scoping review
2025-Mar, Revue neurologique IF:2.8Q2
综述 本文综述了深度学习在神经炎症性疾病中的临床应用,探讨了该技术的潜力及其在医疗领域的应用现状 首次对深度学习在神经炎症性疾病中的临床应用进行全面综述,揭示了该领域的研究热点和未来方向 仅涵盖2018至2024年间发表的148篇文章和5种商业算法,可能未完全反映该领域的最新进展 评估深度学习技术在神经炎症性疾病临床应用中的现状和发展趋势 神经炎症性疾病 数字病理学 神经炎症性疾病 深度学习 多种深度学习模型 图像、文本、时间序列信号 148篇文献和5种商业算法
194 2025-05-17
Association between deep learning radiomics based on placental MRI and preeclampsia with fetal growth restriction: A multicenter study
2025-Mar, European journal of radiology IF:3.2Q1
研究论文 本研究开发了一种基于胎盘MRI的深度学习放射组学模型,用于识别先兆子痫(PE)妊娠及其严重程度 首次利用半监督方法实现胎盘MRI的自动分割,并构建深度学习放射组学(DLR)模型来识别PE妊娠及预测胎儿生长受限(FGR) 研究为回顾性多中心设计,可能存在选择偏倚;样本量相对较小,尤其是PE合并FGR的病例 开发自动定量模型识别先兆子痫妊娠及疾病严重程度 420名孕妇(140例PE患者和280例正常血压妊娠) 数字病理 先兆子痫 MRI,深度学习放射组学(DLR) 深度学习模型 MRI图像 420名孕妇(140例PE,280例对照)
195 2025-05-17
The Multimodal MRI Features of Deteriorative MCI Patients-A 2-Year Follow-up Study
2025-Mar-01, Neurology India IF:0.9Q4
研究论文 本研究通过多模态MRI技术探索了轻度认知障碍(MCI)患者在两年随访期间的影像特征 首次利用多模态MRI序列和深度学习算法,识别出MCI恶化组的FA值降低和ADC值升高的特征性脑区变化 样本量相对较小(105例),且仅进行了2年随访 探索MCI患者认知功能恶化的MRI预警特征 105名MCI患者 数字病理学 老年性疾病 多模态MRI(包括ADC、FA、CBF测量) 深度学习算法 MRI影像数据 105名MCI患者(2019和2021年两次扫描)
196 2025-05-17
Early Colon Cancer Prediction from Histopathological Images Using Enhanced Deep Learning with Confidence Scoring
2025-Mar, Cancer investigation IF:1.8Q3
研究论文 本研究提出了一种名为NalexNet的混合深度学习分类器,用于提高结肠癌组织病理学图像的分类准确性和计算效率 结合Vahadane染色归一化、Watershed分割和Teamwork优化算法进行特征选择,构建了具有卷积层和正常/缩减细胞的NalexNet模型 未提及模型在外部验证集上的表现或临床实际应用中的潜在挑战 开发自动化的结肠癌早期诊断系统 结肠癌组织病理学图像 数字病理学 结肠癌 深度学习 CNN(NalexNet) 图像 NA
197 2025-05-16
Parallel convolutional neural networks for non-invasive cardiac hemodynamic estimation: integrating uncalibrated PPG signals with nonlinear feature analysis
2025-Mar-31, Physiological measurement IF:2.3Q3
研究论文 本研究开发了一种基于数字光电容积脉搏波(PPGD)信号和深度学习技术的非侵入性方法,用于预测心脏血流动力学状态(CHS)的关键参数 提出了一种并行卷积神经网络(PCNN)方法,同时处理原始信号和非线性特征,用于非侵入性心血管生物标志物预测 研究基于虚拟受试者数据,未来需要在真实世界环境中验证以提高临床适用性 开发非侵入性方法评估心脏血流动力学状态 心脏输出量(CO)、系统性血管阻力(SVR)和动脉顺应性(AC)等心血管生物标志物 机器学习 心血管疾病 数字光电容积脉搏波(PPGD)信号分析 并行卷积神经网络(PCNN) 信号数据 4374名虚拟受试者
198 2025-05-16
Unsupervised Deep Learning of Electronic Health Records to Characterize Heterogeneity Across Alzheimer Disease and Related Dementias: Cross-Sectional Study
2025-Mar-31, JMIR aging IF:5.0Q1
研究论文 本研究利用无监督深度学习技术分析电子健康记录,以识别阿尔茨海默病及相关痴呆症的亚型 结合非ADRD诊断代码的预训练嵌入和临床笔记的LLM嵌入,识别出具有性别特异性共病和临床表现的ADRD亚型 研究仅基于单一记忆诊所的数据,可能限制结果的普适性 通过无监督学习识别ADRD的临床亚型,为精准医疗提供依据 3454名来自马萨诸塞州总医院记忆诊所的ADRD患者 机器学习 阿尔茨海默病及相关痴呆症 无监督学习、LLM嵌入 层次聚类 电子健康记录(EHRs) 3454名ADRD患者
199 2025-05-16
Impact of optimized and conventional facility designs on outpatient abdominal MRI workflow efficiency
2025-Mar-30, Scientific reports IF:3.8Q1
research paper 本研究评估了优化设施与传统设施在腹部磁共振成像(MRI)门诊工作流程效率上的差异 通过对比优化设施与传统设施的工作流程效率,展示了优化设施在提高患者吞吐量方面的显著优势 研究仅针对特定机构的两个设施,结果可能不具备普遍性 评估优化设施与传统设施在腹部MRI门诊工作流程效率上的差异 2,723例对比增强肝脏和前列腺MRI检查 digital pathology liver cancer, prostate cancer MRI, deep learning reconstruction NA medical imaging data 2,723例MRI检查
200 2025-05-16
Advances in machine learning for keratoconus diagnosis
2025-Mar-30, International ophthalmology IF:1.4Q3
review 回顾了过去十年中机器学习技术在圆锥角膜(KC)诊断中的应用,并指出了学术研究与临床实践之间的差距 提出了一个路线图模型,以促进机器学习模型在临床实践中的整合,提高诊断准确性和患者护理 缺乏对圆锥角膜早期检测和严重程度分期的客观诊断标准的共识,多学科合作有限,公共数据集访问受限 评估机器学习在圆锥角膜诊断中的进展,并探讨如何将其更好地应用于临床实践 圆锥角膜(KC)的诊断 machine learning keratoconus NA Random Forest, CNN, Feedforward and Feedback Neural Networks, SVM numerical corneal parameters 62 articles analyzed
回到顶部