深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1370 篇文献,本页显示第 801 - 820 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
801 2025-10-07
Intelligent biofilm detection with ensemble of deep learning networks
2025-Mar-01, Medicina oral, patologia oral y cirugia bucal
研究论文 本研究评估了使用集成策略的U-Net神经网络在口腔内照片上自动检测牙菌斑的性能 首次采用集成策略的U-Net神经网络在不使用显色剂的情况下自动检测牙菌斑 回顾性探索性研究,样本来源有限 评估深度学习网络在牙菌斑自动检测中的性能 乳牙和恒牙的口腔内照片 计算机视觉 口腔疾病 深度学习 CNN 图像 两个口腔图像数据集(乳牙和恒牙) NA U-Net 准确率,F1分数,灵敏度,特异度 NA
802 2025-10-07
Critical assessment of missense variant effect predictors on disease-relevant variant data
2025-Mar, Human genetics IF:3.8Q2
研究论文 评估错义变异效应预测工具在疾病相关变异数据上的性能表现 系统评估了最新错义变异效应预测工具,包括CAGI挑战赛提交工具、临床常用工具和新兴深度学习方法,并分析了不同应用场景下的性能差异 评估数据可能受到基因水平标签不平衡的影响,且某些预测工具在区分致病性变异与极罕见良性变异时性能下降 评估错义变异效应预测工具的临床和研究实用性,指导未来工具改进 错义变异效应预测工具 生物信息学 遗传疾病 深度学习, 变异效应预测 深度学习模型 基因变异数据 NA NA NA 特异性, 敏感性 NA
803 2025-10-07
Diagnostic accuracy of artificial intelligence in the detection of maxillary sinus pathology using computed tomography: A concise systematic review
2025-Mar, Imaging science in dentistry IF:1.7Q3
系统综述 评估人工智能在CT/CBCT影像中检测上颌窦病变的诊断性能与准确性 首次系统评估多种深度学习架构在上颌窦病变检测中的综合表现 纳入研究数量有限(12项),需要进一步提高准确性和一致性 评估人工智能在上颌窦病变检测中的诊断准确性 上颌窦病变(如上颌窦炎) 计算机视觉 上颌窦疾病 CT/CBCT成像 CNN 医学影像 3,349名患者(7,358张图像) NA ResNet, DenseNet, YOLO, U-Net 准确率, 敏感度, 特异度, AUC NA
804 2025-04-07
Prediction of influenza virus infection based on deep learning and peripheral blood proteomics: A diagnostic study
2025-Mar-28, Journal of advanced research IF:11.4Q1
研究论文 本研究基于深度学习和外周血蛋白质组学预测流感病毒感染,并验证了该模型在流感、COVID-19和健康人群鉴别诊断中的潜在价值 结合随机森林模型和LASSO回归模型筛选出能准确区分流感患者的临床指标,并通过蛋白质组测序和机器学习发现了26个差异表达蛋白,其中SAA2被证实可作为流感感染的辅助诊断指标 样本量相对有限(850名患者和265名健康个体),且仅针对特定病毒感染(流感、COVID-19及混合感染)进行研究 预测流感病毒感染的关键分子标记 流感、COVID-19及混合感染患者以及健康个体的外周血样本 机器学习 流感 蛋白质组测序、ELISA 随机森林模型、LASSO回归模型 蛋白质组数据、临床特征数据 850名患者(包括流感、COVID-19和混合感染)和265名健康个体 NA NA NA NA
805 2025-04-07
Utility-based Analysis of Statistical Approaches and Deep Learning Models for Synthetic Data Generation With Focus on Correlation Structures: Algorithm Development and Validation
2025-Mar-20, JMIR AI
研究论文 本研究评估了多种合成数据生成方法在复制真实医疗数据集中的相关结构方面的有效性,并比较了它们在随机森林等下游任务中的表现 综合比较了统计方法和深度学习方法在生成合成数据时的性能,特别是在保留相关结构方面的表现 深度学习方法在小型数据集或有限训练周期下表现不佳,LLMs在复制数值依赖关系方面存在困难 评估不同合成数据生成方法在医疗数据中的相关结构复制能力和下游任务表现 合成数据生成方法在模拟和真实医疗数据集上的表现 机器学习 乳腺癌, 糖尿病 Generative Adversarial Networks, 大语言模型(LLMs), Random Forests, eXtreme Gradient Boosting, Gated Additive Tree Ensembles GAN, ctgan, tvae, LLMs 表格数据 模拟数据(10个高斯变量和1个二元目标变量), 体测数据集(13,393样本), 威斯康星乳腺癌数据集(569样本), 糖尿病数据集(768样本) NA NA NA NA
806 2025-10-07
Development of a Clinically Applicable Deep Learning System Based on Sparse Training Data to Accurately Detect Acute Intracranial Hemorrhage from Non-enhanced Head Computed Tomography
2025-Mar-15, Neurologia medico-chirurgica IF:2.4Q2
研究论文 开发基于稀疏训练数据的深度学习系统DeepCT,用于从非增强头部CT图像中准确检测急性颅内出血 基于稀疏训练数据开发临床适用的深度学习系统,并在美国和台湾多中心数据集上验证其普适可靠性 训练数据仅来自单一中心,可能影响模型泛化能力 开发用于检测急性颅内出血的深度学习算法并评估其临床适用性 非增强头部计算机断层扫描图像 计算机视觉 颅内出血 计算机断层扫描 深度学习 医学图像 1,815个CT图像集用于训练,多个外部验证和测试数据集 PyTorch U-Net, ResNet 准确度 NA
807 2025-04-06
Applications of AI in Predicting Drug Responses for Type 2 Diabetes
2025-Mar-27, JMIR diabetes
research paper 本文探讨了人工智能在预测2型糖尿病药物反应中的应用 利用AI技术(包括机器学习和深度学习)分析大规模数据集,以提高药物反应预测的准确性,并倾向于使用集成方法作为首选模型 未提及具体的数据集规模或模型性能的局限性 预测2型糖尿病患者对降糖药物的反应,以优化治疗方案和实现个性化医疗 2型糖尿病患者 machine learning diabetes machine learning, deep learning ensemble methods electronic health records, clinical trials, observational studies NA NA NA NA NA
808 2025-04-06
Integrating Single-Molecule Sequencing and Deep Learning to Predict Haplotype-Specific 3D Chromatin Organization in a Mendelian Condition
2025-Mar-20, bioRxiv : the preprint server for biology
research paper 该研究提出了一种结合单分子测序和深度学习的模型FiberFold,用于预测单倍型特异性的3D染色质组织 结合卷积神经网络和Transformer架构,利用长读长测序数据预测细胞类型和单倍型特异性的3D基因组组织 NA 研究3D基因组结构在基因调控和人类疾病中的作用 人类单倍型特异性3D染色质组织 machine learning Mendelian disease Fiber-seq, long-read sequencing CNN, Transformer multi-omic data NA NA NA NA NA
809 2025-04-06
Predictions from Deep Learning Propose Substantial Protein-Carbohydrate Interplay
2025-Mar-15, bioRxiv : the preprint server for biology
research paper 该研究开发了一种名为PiCAP的新型数据集和神经网络架构,用于预测蛋白质是否非共价结合碳水化合物,并开发了CAPSIF2模型预测与碳水化合物相互作用的蛋白质残基 开发了PiCAP和CAPSIF2两个新模型,分别用于预测蛋白质与碳水化合物的结合以及相互作用的残基,性能优于现有模型 研究基于已知碳水化合物结合蛋白的数据集,可能无法涵盖所有潜在的相互作用 预测蛋白质与碳水化合物的非共价结合及其相互作用位点 蛋白质和碳水化合物的相互作用 machine learning NA neural network PiCAP, CAPSIF2 protein sequence data 已知碳水化合物结合蛋白的数据集及三个蛋白质组 NA NA NA NA
810 2025-04-06
GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals
2025-Mar-14, Patterns (New York, N.Y.)
研究论文 介绍了一种名为GREEN的轻量级神经网络架构,用于处理原始EEG数据,结合了小波变换和黎曼几何 GREEN结合了小波变换和黎曼几何,提供了一种轻量级且可解释的EEG信号处理方法,优于现有非深度学习和大型深度学习模型 未提及具体局限性 探索EEG信号中的生物标志物,并开发一种轻量级且可解释的神经网络架构 EEG信号 机器学习 NA 小波变换和黎曼几何 GREEN(Gabor Riemann EEGNet) EEG信号 超过5,000名参与者的四个数据集 NA NA NA NA
811 2025-10-07
Weakly Aligned Feature Fusion for Multimodal Object Detection
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出一种名为AR-CNN的多模态目标检测方法,解决多模态数据中的位置偏移问题 设计了区域特征对齐模块、RoI抖动策略和特征重加权融合方法,并提供了新的多模态标注数据集KAIST-Paired NA 解决多模态目标检测中的位置偏移问题,提升检测准确性和鲁棒性 多模态图像数据(RGB、热成像、深度)中的目标检测 计算机视觉 NA 多模态图像融合 CNN 多模态图像(RGB、热成像、深度) NA NA AR-CNN NA NA
812 2025-10-07
Bilateral Cross-Modality Graph Matching Attention for Feature Fusion in Visual Question Answering
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出一种图匹配注意力网络用于解决视觉问答任务中的跨模态特征融合问题 首次为问题和图像同时构建图结构,并提出双边跨模态图匹配注意力机制 未明确说明模型计算复杂度和实时性能表现 提升视觉问答任务中跨模态信息的对齐和利用能力 图像和文本问题 计算机视觉,自然语言处理 NA 深度学习,图神经网络 GNN,注意力机制 图像,文本 GQA数据集和VQA 2.0数据集 NA 图匹配注意力网络(GMA),双阶段图编码器 准确率 NA
813 2025-10-07
Quality-Driven Regularization for Deep Learning Networks and Its Application to Industrial Soft Sensors
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出一种用于工业软传感器的质量驱动正则化深度学习方法 提出质量驱动正则化方法,在深度网络预训练阶段保留质量变量相关信息 仅应用于加氢裂化工业过程,未在其他工业场景验证 开发能够提取质量相关特征的深度学习方法以提高工业软传感器预测精度 工业过程数据和产品质量变量 机器学习 NA 深度网络特征学习 SAE, QR-SAE 工业过程数据 NA NA 堆叠自编码器 预测精度 NA
814 2025-10-07
Learning Selective Sensor Fusion for State Estimation
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 提出一种用于状态估计的选择性传感器融合方法SelectFusion 提出端到端选择性传感器融合模块,能够评估不同传感器模态的可靠性并处理现实世界中的噪声或不完整传感器观测 NA 解决自动驾驶和移动机器人系统中的鲁棒传感器融合问题 自动驾驶车辆和移动机器人系统 机器学习和计算机视觉 NA 深度学习,传感器融合 深度学习模型 单目图像,惯性测量,深度图像,激光雷达点云 公共数据集和逐步退化数据集 NA SelectFusion 轨迹估计的尺度和全局姿态 NA
815 2025-04-06
Dynamic Neural Network Structure: A Review for its Theories and Applications
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
综述 本文全面回顾了动态神经网络(DNN)的理论及其应用,重点探讨了其在深度学习和广泛学习领域的发展 详细分析了DNN的动态结构和参数灵活性带来的优势,并探讨了其在多个领域的应用潜力 虽然综述了DNN的理论和应用,但未涉及具体实验验证或性能比较 旨在为研究人员提供对DNN的全面理解,并指导未来的研究方向 动态神经网络(DNN)的理论基础、结构优化及其应用 机器学习 NA NA DNN, BLS NA NA NA NA NA NA
816 2025-04-06
Age-sex-specific burden of urological cancers attributable to risk factors in China and its provinces, 1990-2021, and forecasts with scenarios simulation: a systematic analysis for the Global Burden of Disease Study 2021
2025-Mar, The Lancet regional health. Western Pacific
research paper 该研究分析了1990-2021年中国及其各省份泌尿系统癌症的年龄性别特异性负担,并预测了未来情景模拟下的疾病负担 首次采用多注意力深度学习管道(iTransformer)建模泌尿系统癌症的时空模式,并提供年龄-性别-地区特异性长期预测 研究依赖于GBD数据库的准确性,且预测模型可能无法完全捕捉未来社会经济变化的影响 监测中国泌尿系统癌症的分布和决定因素,模拟健康干预措施的效果 中国34个省份的泌尿系统癌症患者 digital pathology prostate cancer, bladder cancer, kidney cancer, testicular cancer iTransformer深度学习模型 iTransformer 流行病学数据 全国范围1990-2021年数据,2021年新发病例266,887例,现患病例159,506,067例 NA NA NA NA
817 2025-04-05
Global trends in artificial intelligence applications in liver disease over seventeen years
2025-Mar-27, World journal of hepatology IF:2.5Q2
review 本文分析了17年来人工智能在肝病领域的应用趋势,总结了当前研究状况并识别了热点 通过文献计量学方法全面梳理了AI在肝病领域的研究热点和发展趋势 仅基于Web of Science数据库,可能遗漏其他重要文献 分析AI在肝病领域的研究现状和发展趋势 4051篇关于肝病和AI的研究文章 digital pathology liver disease 文献计量分析 machine learning, deep learning, CNN 文献数据 4051篇研究文章 NA NA NA NA
818 2025-04-05
Weakly Supervised Deep Learning Can Analyze Focal Liver Lesions in Contrast-Enhanced Ultrasound
2025-Mar-06, Digestion IF:3.0Q2
研究论文 本研究评估了弱监督深度学习模型在分类肝脏局灶性病变良恶性方面的性能 使用弱监督注意力机制的多实例学习算法,无需手动标注,仅使用病例标签进行训练 研究为回顾性研究,样本来自单一医疗机构 开发辅助诊断肝脏局灶性病变良恶性的AI算法 肝脏局灶性病变(FLLs)患者 数字病理 肝脏疾病 对比增强超声(CEUS) 注意力机制的多实例学习算法 图像 370名患者,共955,938张CEUS图像 NA NA NA NA
819 2025-04-05
Conditioning generative latent optimization for sparse-view computed tomography image reconstruction
2025-Mar, Journal of medical imaging (Bellingham, Wash.)
research paper 提出一种无需训练数据的稀疏视图CT图像重建方法,通过条件生成潜在优化(cGLO)提高重建质量 无需训练数据,独立于实验设置,可从小型无监督数据集中初始化以提高重建效果 未提及具体在低剂量CT或其他成像任务中的表现 解决稀疏视图CT图像重建问题,提高重建质量 稀疏视图CT图像 digital pathology NA 条件生成潜在优化(cGLO) generative model CT图像 未明确提及具体样本数量 NA NA NA NA
820 2025-04-04
Generating synthetic brain PET images of synaptic density based on MR T1 images using deep learning
2025-Mar-31, EJNMMI physics IF:3.0Q2
研究论文 本研究利用深度学习技术基于MRI T1图像生成合成的大脑突触密度PET图像 首次使用卷积基础的3D编码器-解码器模型从MRI生成[11C]UCB-J SV2A PET合成图像,解决了SV2A示踪剂在实际应用中的可获得性问题 研究样本量相对有限(160名参与者),且未明确说明模型在不同疾病群体间的泛化能力 开发一种通过MRI生成合成[11C]UCB-J PET图像的方法,以解决SV2A示踪剂在实际应用中的限制 160名同时接受MRI和[11C]UCB-J PET成像的参与者,包括精神分裂症、大麻使用障碍和阿尔茨海默病患者 数字病理学 神经系统疾病 深度学习 3D CNN编码器-解码器 医学影像(MRI和PET图像) 160名参与者 NA NA NA NA
回到顶部