本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
881 | 2025-04-06 |
Integrating Single-Molecule Sequencing and Deep Learning to Predict Haplotype-Specific 3D Chromatin Organization in a Mendelian Condition
2025-Mar-20, bioRxiv : the preprint server for biology
DOI:10.1101/2025.02.26.640261
PMID:40166185
|
research paper | 该研究提出了一种结合单分子测序和深度学习的模型FiberFold,用于预测单倍型特异性的3D染色质组织 | 结合卷积神经网络和Transformer架构,利用长读长测序数据预测细胞类型和单倍型特异性的3D基因组组织 | NA | 研究3D基因组结构在基因调控和人类疾病中的作用 | 人类单倍型特异性3D染色质组织 | machine learning | Mendelian disease | Fiber-seq, long-read sequencing | CNN, Transformer | multi-omic data | NA |
882 | 2025-04-06 |
Predicting Task Activation Maps from Resting-State Functional Connectivity using Deep Learning
2025-Mar-19, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.10.612309
PMID:39314460
|
research paper | 使用深度学习从静息态功能连接预测任务激活图 | 复制了最先进的深度学习模型BrainSurfCNN,并探索了两种新的架构改进方法:添加Squeeze-and-Excitation注意力机制(BrainSERF)和使用基于图神经网络的架构(BrainSurfGCN) | 未提及具体局限性 | 推进深度学习在神经影像学中的应用 | 人脑连接组计划(HCP)中的静息态和任务fMRI数据 | 神经影像学 | NA | 深度学习,fMRI | BrainSurfCNN, BrainSERF, BrainSurfGCN | fMRI数据 | 未提及具体样本量 |
883 | 2025-04-06 |
Predictions from Deep Learning Propose Substantial Protein-Carbohydrate Interplay
2025-Mar-15, bioRxiv : the preprint server for biology
DOI:10.1101/2025.03.07.641884
PMID:40161692
|
research paper | 该研究开发了一种名为PiCAP的新型数据集和神经网络架构,用于预测蛋白质是否非共价结合碳水化合物,并开发了CAPSIF2模型预测与碳水化合物相互作用的蛋白质残基 | 开发了PiCAP和CAPSIF2两个新模型,分别用于预测蛋白质与碳水化合物的结合以及相互作用的残基,性能优于现有模型 | 研究基于已知碳水化合物结合蛋白的数据集,可能无法涵盖所有潜在的相互作用 | 预测蛋白质与碳水化合物的非共价结合及其相互作用位点 | 蛋白质和碳水化合物的相互作用 | machine learning | NA | neural network | PiCAP, CAPSIF2 | protein sequence data | 已知碳水化合物结合蛋白的数据集及三个蛋白质组 |
884 | 2025-04-06 |
GREEN: A lightweight architecture using learnable wavelets and Riemannian geometry for biomarker exploration with EEG signals
2025-Mar-14, Patterns (New York, N.Y.)
DOI:10.1016/j.patter.2025.101182
PMID:40182177
|
研究论文 | 介绍了一种名为GREEN的轻量级神经网络架构,用于处理原始EEG数据,结合了小波变换和黎曼几何 | GREEN结合了小波变换和黎曼几何,提供了一种轻量级且可解释的EEG信号处理方法,优于现有非深度学习和大型深度学习模型 | 未提及具体局限性 | 探索EEG信号中的生物标志物,并开发一种轻量级且可解释的神经网络架构 | EEG信号 | 机器学习 | NA | 小波变换和黎曼几何 | GREEN(Gabor Riemann EEGNet) | EEG信号 | 超过5,000名参与者的四个数据集 |
885 | 2025-04-06 |
MMFmiRLocEL: A multi-model fusion and ensemble learning approach for identifying miRNA subcellular localization using RNA structure language model
2025-Mar-07, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3548940
PMID:40053625
|
研究论文 | 本文提出了一种名为MMFmiRLocEL的多模型融合与集成学习方法,用于识别miRNA的亚细胞定位 | 首次结合序列、结构和功能三种信息进行miRNA亚细胞定位预测,并采用多模型融合与集成学习策略 | 未提及具体样本量或验证数据集规模 | 提高miRNA亚细胞定位预测的准确性和鲁棒性 | miRNA亚细胞定位(MSL) | 生物信息学 | NA | RNA 3D结构预测模型、卷积神经网络、深度残差神经网络 | CNN、ResNet、多模型融合与集成学习 | RNA序列数据、3D结构数据、miRNA-疾病关联网络数据 | NA |
886 | 2025-04-06 |
Weakly Aligned Feature Fusion for Multimodal Object Detection
2025-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2021.3105143
PMID:34437075
|
研究论文 | 提出一种名为AR-CNN的多模态检测器,解决多模态数据中的位置偏移问题,并通过特征融合提升物体检测的准确性和鲁棒性 | 设计了区域特征对齐模块和RoI抖动策略,提出新型多模态特征融合方法,并提供了新的多模态标注数据集KAIST-Paired | 未明确提及方法在极端未对齐情况下的性能表现 | 解决多模态物体检测中的位置偏移问题,提升检测准确性和鲁棒性 | 多模态图像数据(如彩色、热成像和深度图像)中的物体 | 计算机视觉 | NA | 多模态特征融合 | CNN, AR-CNN | 多模态图像(RGB-T, RGB-D) | 在多种2D和3D物体检测数据集上进行了广泛实验 |
887 | 2025-04-06 |
Bilateral Cross-Modality Graph Matching Attention for Feature Fusion in Visual Question Answering
2025-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2021.3135655
PMID:35130171
|
research paper | 该论文提出了一种图匹配注意力网络(GMA),用于解决视觉问答(VQA)任务中图像和问题特征的跨模态融合问题 | 创新点包括为图像和问题构建图结构,探索模态内关系,并提出双边跨模态GMA来推断图像与问题之间的关系 | 未明确提及具体限制 | 研究目的是改进视觉问答任务中跨模态信息的对齐和利用 | 研究对象是视觉问答任务中的图像和问题 | computer vision | NA | graph matching attention (GMA) | GMA network | image, text | GQA dataset和VQA 2.0 dataset(具体样本量未提及) |
888 | 2025-04-06 |
Quality-Driven Regularization for Deep Learning Networks and Its Application to Industrial Soft Sensors
2025-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3144162
PMID:35180085
|
研究论文 | 本文提出了一种新的质量驱动正则化(QR)方法,用于深度网络从工业过程数据中学习质量相关特征 | 提出QR-SAE模型,通过改变损失函数控制不同输入变量的权重,以提取质量相关信息 | NA | 开发数据驱动的软传感器,提高工业过程质量预测的准确性 | 工业过程数据 | 机器学习 | NA | 深度网络 | QR-SAE(基于质量驱动正则化的堆叠自编码器) | 工业过程数据 | NA |
889 | 2025-04-06 |
Learning Selective Sensor Fusion for State Estimation
2025-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2022.3176677
PMID:35657847
|
研究论文 | 提出了一种名为SelectFusion的端到端选择性传感器融合模块,用于处理自动驾驶和移动机器人系统中的多传感器数据融合问题 | 提出了两种新的融合模块——确定性软融合和随机硬融合,并提供了一个统一的框架,不限于特定的模态或任务 | 当前深度测距模型缺乏可解释性 | 解决多传感器数据融合中的鲁棒性问题,以处理现实世界中的噪声或不完整传感器观测 | 自动驾驶车辆和移动机器人系统 | 机器学习和传感器融合 | NA | 深度学习(DL) | SelectFusion模块 | 单目图像、惯性测量、深度图像和LIDAR点云 | 公共数据集和逐步退化的数据集 |
890 | 2025-04-06 |
Dynamic Neural Network Structure: A Review for its Theories and Applications
2025-Mar, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3377194
PMID:40038922
|
综述 | 本文全面回顾了动态神经网络(DNN)的理论及其应用,重点探讨了其在深度学习和广泛学习领域的发展 | 详细分析了DNN的动态结构和参数灵活性带来的优势,并探讨了其在多个领域的应用潜力 | 虽然综述了DNN的理论和应用,但未涉及具体实验验证或性能比较 | 旨在为研究人员提供对DNN的全面理解,并指导未来的研究方向 | 动态神经网络(DNN)的理论基础、结构优化及其应用 | 机器学习 | NA | NA | DNN, BLS | NA | NA |
891 | 2025-04-06 |
Age-sex-specific burden of urological cancers attributable to risk factors in China and its provinces, 1990-2021, and forecasts with scenarios simulation: a systematic analysis for the Global Burden of Disease Study 2021
2025-Mar, The Lancet regional health. Western Pacific
DOI:10.1016/j.lanwpc.2025.101517
PMID:40177596
|
research paper | 该研究分析了1990-2021年中国及其各省份泌尿系统癌症的年龄性别特异性负担,并预测了未来情景模拟下的疾病负担 | 首次采用多注意力深度学习管道(iTransformer)建模泌尿系统癌症的时空模式,并提供年龄-性别-地区特异性长期预测 | 研究依赖于GBD数据库的准确性,且预测模型可能无法完全捕捉未来社会经济变化的影响 | 监测中国泌尿系统癌症的分布和决定因素,模拟健康干预措施的效果 | 中国34个省份的泌尿系统癌症患者 | digital pathology | prostate cancer, bladder cancer, kidney cancer, testicular cancer | iTransformer深度学习模型 | iTransformer | 流行病学数据 | 全国范围1990-2021年数据,2021年新发病例266,887例,现患病例159,506,067例 |
892 | 2025-04-05 |
Global trends in artificial intelligence applications in liver disease over seventeen years
2025-Mar-27, World journal of hepatology
IF:2.5Q2
DOI:10.4254/wjh.v17.i3.101721
PMID:40177211
|
review | 本文分析了17年来人工智能在肝病领域的应用趋势,总结了当前研究状况并识别了热点 | 通过文献计量学方法全面梳理了AI在肝病领域的研究热点和发展趋势 | 仅基于Web of Science数据库,可能遗漏其他重要文献 | 分析AI在肝病领域的研究现状和发展趋势 | 4051篇关于肝病和AI的研究文章 | digital pathology | liver disease | 文献计量分析 | machine learning, deep learning, CNN | 文献数据 | 4051篇研究文章 |
893 | 2025-04-05 |
MEF2C controls segment-specific gene regulatory networks that direct heart tube morphogenesis
2025-Mar-27, bioRxiv : the preprint server for biology
DOI:10.1101/2024.11.01.621613
PMID:39554149
|
研究论文 | 本研究探讨了转录因子MEF2C在早期心脏形成中控制的基因调控网络(GRNs)及其对心脏管形态发生的影响 | 通过单核RNA和ATAC测序时间序列分析,揭示了MEF2C缺失导致的‘后化’心脏基因特征和染色质景观,并利用深度学习模型构建了心脏各段的发育轨迹 | 研究主要基于小鼠胚胎模型,结果在其他物种中的普适性需要进一步验证 | 解析早期心脏管形成过程中谱系特异性基因调控网络 | 野生型和MEF2C缺失胚胎的心脏发育过程 | 发育生物学 | 心脏发育异常 | 单核RNA测序(snRNA-seq)、ATAC测序、深度学习 | 深度学习模型 | 基因组数据、表观基因组数据 | 野生型和MEF2C缺失胚胎(具体数量未明确说明) |
894 | 2025-04-05 |
AGPred: An End-to-End Deep Learning Model to Predicting Drug Approvals in Clinical Trials Based on Molecular Features
2025-Mar-06, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3547315
PMID:40048330
|
research paper | 提出了一种基于深度学习的端到端模型AGPred,用于预测药物在临床试验中的批准率 | 采用基于注意力的图神经网络(GNN)自动学习药物分子表示,并结合交叉注意力融合模块学习分子指纹特征,整合药物的理化性质 | 未提及具体的数据集规模限制或模型泛化能力的局限性 | 提高药物临床试验批准率的预测准确性 | 药物分子 | machine learning | NA | deep learning, GNN | attention-based GNN | molecular graphs, molecular fingerprints, physicochemical properties | 未明确提及具体样本数量 |
895 | 2025-04-05 |
Weakly Supervised Deep Learning Can Analyze Focal Liver Lesions in Contrast-Enhanced Ultrasound
2025-Mar-06, Digestion
IF:3.0Q2
DOI:10.1159/000545098
PMID:40049151
|
研究论文 | 本研究评估了弱监督深度学习模型在分类肝脏局灶性病变良恶性方面的性能 | 使用弱监督注意力机制的多实例学习算法,无需手动标注,仅使用病例标签进行训练 | 研究为回顾性研究,样本来自单一医疗机构 | 开发辅助诊断肝脏局灶性病变良恶性的AI算法 | 肝脏局灶性病变(FLLs)患者 | 数字病理 | 肝脏疾病 | 对比增强超声(CEUS) | 注意力机制的多实例学习算法 | 图像 | 370名患者,共955,938张CEUS图像 |
896 | 2025-04-05 |
Conditioning generative latent optimization for sparse-view computed tomography image reconstruction
2025-Mar, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.2.024004
PMID:40177097
|
research paper | 提出一种无需训练数据的稀疏视图CT图像重建方法,通过条件生成潜在优化(cGLO)提高重建质量 | 无需训练数据,独立于实验设置,可从小型无监督数据集中初始化以提高重建效果 | 未提及具体在低剂量CT或其他成像任务中的表现 | 解决稀疏视图CT图像重建问题,提高重建质量 | 稀疏视图CT图像 | digital pathology | NA | 条件生成潜在优化(cGLO) | generative model | CT图像 | 未明确提及具体样本数量 |
897 | 2025-04-04 |
Generating synthetic brain PET images of synaptic density based on MR T1 images using deep learning
2025-Mar-31, EJNMMI physics
IF:3.0Q2
DOI:10.1186/s40658-025-00744-5
PMID:40163154
|
研究论文 | 本研究利用深度学习技术基于MRI T1图像生成合成的大脑突触密度PET图像 | 首次使用卷积基础的3D编码器-解码器模型从MRI生成[11C]UCB-J SV2A PET合成图像,解决了SV2A示踪剂在实际应用中的可获得性问题 | 研究样本量相对有限(160名参与者),且未明确说明模型在不同疾病群体间的泛化能力 | 开发一种通过MRI生成合成[11C]UCB-J PET图像的方法,以解决SV2A示踪剂在实际应用中的限制 | 160名同时接受MRI和[11C]UCB-J PET成像的参与者,包括精神分裂症、大麻使用障碍和阿尔茨海默病患者 | 数字病理学 | 神经系统疾病 | 深度学习 | 3D CNN编码器-解码器 | 医学影像(MRI和PET图像) | 160名参与者 |
898 | 2025-04-04 |
Partial discharge defect recognition method of switchgear based on cloud-edge collaborative deep learning
2025-Mar-31, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-024-81478-9
PMID:40164608
|
研究论文 | 提出了一种基于边缘计算和深度学习的开关柜局部放电联合识别方法 | 构建了终端设备侧、终端采集侧、边缘计算侧和云计算侧的边缘协同缺陷识别架构,并基于DBN提出了开关柜局部放电缺陷识别方法 | 验证使用的是实验室模拟的局部放电样本,实际应用中的效果可能需要进一步验证 | 解决传统局部放电检测方法在实时监测、快速评估、样本融合和联合分析方面的不足 | 开关柜的局部放电信号 | 机器学习 | NA | UHF传感器和宽带脉冲电流传感器 | DBN | 信号数据 | 实验室模拟的局部放电样本 |
899 | 2025-04-04 |
Well log data generation and imputation using sequence based generative adversarial networks
2025-Mar-31, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95709-0
PMID:40164658
|
研究论文 | 本研究提出了一种基于序列生成对抗网络(GANs)的新框架,用于测井数据的生成和缺失数据填补 | 采用两种序列GAN模型(TSGAN和SeqGAN)分别进行合成数据生成和缺失数据填补,在北海荷兰地区数据集上验证了其优越性 | 实验仅使用了特定区域(北海荷兰地区)的数据集,未验证在其他地质区域的泛化能力 | 解决测井数据中的缺失和不准确定问题,提高储层评估的可靠性 | 测井数据 | 机器学习 | NA | 生成对抗网络(GANs) | TSGAN, SeqGAN | 时间序列数据 | 5、10和50个数据点的不同区段 |
900 | 2025-04-04 |
The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors
2025-Mar-30, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-01950-6
PMID:40159380
|
review | 本文综述了影像组学在脑肿瘤研究中的应用及其可解释性问题 | 整合脑肿瘤生物学领域知识与可解释性方法,提升传统手工特征影像组学和深度学习影像组学的可解释性 | 深度学习模型缺乏生物学机制基础 | 探讨影像组学在脑肿瘤研究中的应用及其临床转化潜力 | 脑肿瘤影像组学 | digital pathology | brain tumors | radiomics | deep learning-based models | medical imaging | NA |