深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1439 篇文献,本页显示第 901 - 920 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
901 2025-04-04
Dual discriminator GAN-based synthetic crop disease image generation for precise crop disease identification
2025-Mar-30, Plant methods IF:4.7Q1
研究论文 本文提出了一种基于双判别器GAN的合成作物病害图像生成方法,用于提高作物病害识别的精确度 设计了具有双判别器结构的频域和小波图像增强网络(FHWD),结合小波损失和快速傅里叶变换损失函数,提升生成图像的视觉质量和真实性 实验仅在PlantVillage数据集的十种作物病害上进行,未验证在其他作物病害上的泛化能力 解决作物病害图像稀缺问题,提升深度学习模型的病害识别准确率和泛化能力 作物病害图像 计算机视觉 作物病害 GAN 双判别器GAN 图像 PlantVillage数据集中的十种作物病害
902 2025-04-04
Deep learning-based mobile application for efficient eyelid tumor recognition in clinical images
2025-Mar-30, NPJ digital medicine IF:12.4Q1
research paper 本研究验证了一种基于深度学习的移动应用程序,用于自我诊断眼睑肿瘤,以改善患者的健康支持系统 开发了一种基于YOLOv5和Efficient-Net v2-B架构的移动应用,用于眼睑肿瘤的自我诊断,其准确率高于普通医生、住院医生和眼科专家 研究仅基于1195张预处理临床眼部照片和活检结果,样本量可能不足以覆盖所有眼睑肿瘤类型 开发一种高效的移动应用程序,用于眼睑肿瘤的早期检测和监测 眼睑肿瘤患者 computer vision 眼睑肿瘤 深度学习 YOLOv5, Efficient-Net v2-B image 1195张预处理临床眼部照片和活检结果
903 2025-04-04
An integration of ensemble deep learning with hybrid optimization approaches for effective underwater object detection and classification model
2025-Mar-29, Scientific reports IF:3.8Q1
research paper 该研究提出了一种结合集成深度学习和混合优化算法的水下物体检测与分类模型(UODC-EDLHOA) 采用集成深度学习方法(DNN、DBN、LSTM)和混合优化算法(STSC)进行水下物体检测与分类,提高了检测精度 未提及模型在实时性、计算资源消耗或实际部署中的表现 提升水下物体检测与分类的准确性和鲁棒性 水下物体 computer vision NA deep learning, hybrid optimization algorithms EfficientNetB7, YOLOv9, DNN, DBN, LSTM image UOD数据集(未提及具体数量)
904 2025-04-04
Quantitative analysis and visualization of chemical compositions during shrimp flesh deterioration using hyperspectral imaging: A comparative study of machine learning and deep learning models
2025-Mar-29, Food chemistry IF:8.5Q1
研究论文 利用高光谱成像技术定量分析虾肉变质过程中的化学成分变化,并比较机器学习和深度学习模型的性能 结合低层数据融合和预测模型,比较了传统化学计量学方法和深度学习方法在虾肉变质分析中的表现,并生成了化学成分变化的空间分布图 未来研究需要优化模型以适应不同条件,并探索将高光谱成像方法与其他传感器技术结合 快速、无损地预测虾肉变质过程中的化学成分变化,监控冷链物流中的虾肉质量 虾肉 计算机视觉 NA 高光谱成像(HSI) PLS, CNN, LSTM, CNN-LSTM 图像 NA
905 2025-04-04
Cropformer: An interpretable deep learning framework for crop genomic prediction
2025-Mar-10, Plant communications IF:9.4Q1
research paper 介绍了一个名为Cropformer的可解释深度学习框架,用于作物基因组预测和表型预测 结合了卷积神经网络和多种自注意力机制,提高了预测精度和模型的可解释性 未提及具体的局限性 加速优良基因型的识别和育种周期的缩短 五种主要作物:玉米、水稻、小麦、谷子和番茄 machine learning NA genomic selection (GS) CNN与自注意力机制结合的深度学习框架 基因组数据 超过20个性状的五种主要作物数据
906 2025-04-04
A deep-learning model to predict the completeness of cytoreductive surgery in colorectal cancer with peritoneal metastasis☆
2025-Mar-10, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
研究论文 开发了一种名为DeAF的深度学习模型,用于预测结直肠癌腹膜转移患者细胞减灭术的完整性 提出了一种新型AI框架DeAF,通过解耦特征对齐和融合来辅助选择适合CRS的患者并预测手术完整性 研究样本量有限(186例患者),且所有数据来自三级医院,可能影响模型的普遍适用性 改善结直肠癌腹膜转移患者细胞减灭术的患者选择和手术完整性预测 结直肠癌伴腹膜转移患者 数字病理学 结直肠癌 深度学习 DeAF框架(基于Simsiam算法) CT图像和临床病理参数 186例来自4家三级医院的结直肠癌伴腹膜转移患者
907 2025-04-04
Introduction to Artificial Intelligence for General Surgeons: A Narrative Review
2025-Mar, Cureus
review 本文是一篇叙述性综述,旨在向普通外科医生介绍人工智能(AI)的基础知识及其在胸腹部创伤中的应用 综述了AI在创伤护理中的潜在应用,特别是在诊断、风险预测和决策支持方面,并讨论了将AI整合到澳大利亚医疗系统中的意义 当前AI在临床实践中的应用仍有限,需要未来进行前瞻性和本地验证的研究 教育普通外科医生了解AI的基础知识及其在创伤护理中的应用 普通外科医生及AI在胸腹部创伤中的应用 machine learning trauma machine learning, deep learning, natural language processing, computer vision NA NA NA
908 2025-04-03
Deep graph learning of multimodal brain networks defines treatment-predictive signatures in major depression
2025-Mar-31, Molecular psychiatry IF:9.6Q1
研究论文 本研究利用深度图学习方法分析多模态脑网络数据,以预测重度抑郁症患者对抗抑郁药物的治疗反应 开发了一个基于图神经网络的深度学习框架,整合了fMRI和EEG数据,揭示了与治疗反应相关的多模态脑网络特征 样本量相对有限(265名患者),且仅针对特定抗抑郁药物(舍曲林)进行了研究 预测重度抑郁症患者对抗抑郁药物的个体化治疗反应 265名重度抑郁症患者(130名接受舍曲林治疗,135名接受安慰剂) 数字病理学 抑郁症 fMRI, EEG, 图神经网络 GNN 神经影像数据 265名患者(来自EMBARC研究)
909 2025-04-03
Simultaneous detection of citrus internal quality attributes using near-infrared spectroscopy and hyperspectral imaging with multi-task deep learning and instrumental transfer learning
2025-Mar-22, Food chemistry IF:8.5Q1
研究论文 本研究利用高光谱成像(HSI)和近红外光谱(NIR)技术,结合多任务深度学习和仪器迁移学习,同时检测柑橘内部品质属性 开发了单任务和多任务卷积神经网络(CNN)模型,探索了从HSI到NIR的模型迁移可行性 研究仅针对两种柑橘品种(衢州椪柑和湘西长叶),模型在其他品种上的适用性未验证 同时测定柑橘水果的多种品质属性,并实现不同仪器间模型的成功迁移 衢州椪柑和湘西长叶两种柑橘的可溶性固形物含量(SSC)和pH值 计算机视觉 NA 高光谱成像(HSI)和近红外光谱(NIR) CNN(卷积神经网络) 图像和光谱数据 两种柑橘品种(具体样本数量未提及)
910 2025-04-03
Machine-learning models for Alzheimer's disease diagnosis using neuroimaging data: survey, reproducibility, and generalizability evaluation
2025-Mar-21, Brain informatics
研究论文 本文综述了利用神经影像数据进行阿尔茨海默病诊断的机器学习模型,并评估了这些模型的可重复性和泛化性 对现有机器学习模型在阿尔茨海默病诊断中的可重复性和泛化性进行了系统性评估 现有模型在不同数据队列中泛化能力下降 评估机器学习模型在阿尔茨海默病早期诊断中的应用潜力 阿尔茨海默病患者和轻度认知障碍患者 机器学习 阿尔茨海默病 sMRI, fMRI, PET 传统机器学习(ML)和深度学习(DL) 神经影像数据 NA
911 2025-03-13
Publisher Correction: A hybrid explainable model based on advanced machine learning and deep learning models for classifying brain tumors using MRI images
2025-Mar-11, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
912 2025-04-03
Comparative analysis of U-Mamba and no new U-Net for the detection and segmentation of esophageal cancer in contrast-enhanced computed tomography images
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究旨在开发和验证一种深度学习模型,用于在增强CT图像中自动检测和分割食管癌病变 比较了U-Mamba和nnU-Net两种深度学习网络在食管癌检测和分割中的性能,并展示了其在减少漏诊和提供一致病变标注方面的优势 研究为回顾性设计,可能受到选择偏倚的影响,且仅使用了来自三家医院的数据 开发自动检测和分割食管癌病变的深度学习模型 食管癌患者和健康食管的个体 数字病理 食管癌 对比增强CT成像 U-Mamba和nnU-Net 医学图像 871名患者(564名男性),中位年龄67岁
913 2025-04-03
Ultrasound-based deep learning radiomics for multi-stage assisted diagnosis in reducing unnecessary biopsies of BI-RADS 4A lesions
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究开发了基于超声图像的深度学习放射组学模型,用于改善BI-RADS 4A病变的诊断一致性并减少不必要的活检 提出了两种深度学习放射组学模型(DLR_LH和DLR_BM),用于乳腺病变风险重新分层和识别低恶性概率的BI-RADS 4A病变,以减少不必要的活检 研究为回顾性设计,可能受到选择偏倚的影响 提高乳腺超声成像诊断的准确性,减少不必要的活检 746名乳腺病变患者 数字病理 乳腺癌 深度学习放射组学 DLR(深度学习放射组学模型) 超声图像和临床变量 746名患者
914 2025-04-03
Multitask Swin Transformer for classification and characterization of pulmonary nodules in CT images
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 提出了一种多任务Swin Transformer(MTST)模型,用于CT图像中肺结节的分类和特征分析 结合多任务学习框架,同时输出良恶性分类、多级分类和结节特征分析,提高了模型的性能和可解释性 模型性能依赖于数据质量和数量,且在实际临床环境中的泛化能力有待进一步验证 开发一种计算机辅助诊断(CAD)系统,用于肺结节的早期诊断和特征分析 CT图像中的肺结节 digital pathology lung cancer U-Net GAN用于图像增强 Swin Transformer, CNN CT图像 训练集/验证集/测试集分别为9,600/2,400/1,600个结节
915 2025-04-03
Deep learning for identifying cervical ossification of the posterior longitudinal ligament: a systematic review and meta-analysis
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
系统综述与荟萃分析 本文通过系统综述和荟萃分析评估深度学习模型在诊断和预测颈椎后纵韧带骨化症中的性能 首次系统评估深度学习模型在颈椎后纵韧带骨化症诊断中的表现,并与传统方法进行比较 研究方法存在差异,深度学习技术本身存在挑战 评估深度学习模型在颈椎后纵韧带骨化症诊断和预测中的准确性和可靠性 颈椎后纵韧带骨化症患者 数字病理学 颈椎病 深度学习 DLM 医学影像 7项研究共3,373名患者,荟萃分析包含1,016名患者
916 2025-04-03
Advanced deep learning for multi-class colorectal cancer histopathology: integrating transfer learning and ensemble methods
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 本研究开发了一种基于深度卷积神经网络(CNNs)的集成模型,用于结直肠癌组织病理学图像的多分类 结合迁移学习和集成方法优化深度学习模型在结直肠癌组织病理学图像分类中的性能 研究仅在一个公开数据集(EBHI)上进行了测试,未在其他数据集上验证模型的泛化能力 优化深度学习模型在结直肠癌组织病理学图像分类中的性能,以提高早期检测率和诊断准确性 结直肠癌组织病理学图像 digital pathology colorectal cancer deep learning, transfer learning, ensemble methods CNN, ensemble model image EBHI数据集(具体样本数量未提及)
917 2025-04-03
An automatic deep learning-based bone mineral density measurement method using X-ray images of children
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 提出了一种基于深度学习的自动骨密度测量方法,利用儿童X射线图像进行骨密度评估 通过单次X射线图像结合等效阶梯体模,实现骨龄或损伤评估的同时测量前臂骨密度,且采用深度学习方法消除软组织对骨密度测量的影响 方法仅在500张临床X射线图像上验证,样本量相对有限 开发一种适用于临床环境的自动骨密度测量方法,以替代或补充DXA技术 儿童的手部和前臂X射线图像 数字病理 骨质疏松症 X射线成像 深度学习 图像 500张临床X射线图像
918 2025-04-03
Enhancing bone radiology images classification through appropriate preprocessing: a deep learning and explainable artificial intelligence approach
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本文通过深度学习和可解释人工智能方法,探讨了适当的预处理对骨放射学图像分类性能的提升作用 本文的创新点在于将特定的预处理技术(如去除背景和无关部分)应用于医学图像,以提高深度学习模型在分类任务中的性能,并结合XAI技术验证和说明其益处 NA 强调医学深度学习模型结果的真实性和模型及其创建者的责任,通过提出针对医学数据集的预处理方法来提高模型的性能和可靠性 骨放射学图像数据集 计算机视觉 NA 深度学习,可解释人工智能(XAI) DenseNet201等深度学习神经网络 图像 两个骨放射学图像数据集
919 2025-04-03
A multi-scale pyramid residual weight network for medical image fusion
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 提出了一种名为LYWNet的多尺度金字塔残差权重网络,用于医学图像融合,旨在有效整合高频细节信息和低频上下文信息 提出了一种新的CNN网络LYWNet,通过多尺度金字塔残差权重块和特征蒸馏融合算法,有效保留高频细节和低频上下文信息 未提及具体的样本量或实验数据集的规模,可能影响方法的普适性验证 改进多模态医学图像融合技术,提升临床诊断和手术导航的准确性和质量 医学图像(如SPECT-MRI、PET-MRI、MRI-CT等) digital pathology NA CNN-based image fusion CNN (LYWNet) image NA
920 2025-04-03
Quantitative assessment and risk stratification of random acute pulmonary embolism cases using a deep learning model based on computed tomography pulmonary angiography images
2025-Mar-03, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 本研究开发了一种结合Transformer的VB-Net深度学习模型,用于从CTPA图像中检测肺栓塞并自动计算血栓负荷评分 首次报道了结合Transformer的VB-Net深度学习模型在肺栓塞检测和血栓负荷评分自动计算中的应用 模型在随机CTPA检查中的灵敏度为76.67%,仍有提升空间 通过早期诊断、风险分层和治疗方案确定来帮助患者,改善预后并减轻放射科医生的负担 肺栓塞患者 数字病理学 肺栓塞 CTPA VB-Net结合Transformer 医学影像 2,424例CTPA检查病例(44%男性)用于训练和测试模型,另外70例随机CTPA数据(30例急性肺栓塞,40例无肺栓塞)用于验证
回到顶部