本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 961 | 2025-03-28 |
High-speed threat detection in 5G SDN with particle swarm optimizer integrated GRU-driven generative adversarial network
2025-Mar-23, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95011-z
PMID:40122918
|
研究论文 | 本文提出了一种结合粒子群优化器和GRU驱动的生成对抗网络的高效深度学习模型,用于5G软件定义网络中的威胁检测 | 创新点在于将粒子群优化器(PSO)与GRU驱动的生成对抗网络(GAN)相结合,优化网络权重并生成合成攻击数据,从而提高检测性能 | NA | 开发高效的深度学习模型以提高5G SDN环境中的攻击检测性能和响应能力 | 5G软件定义网络(SDN)中的网络流量数据 | 机器学习 | NA | 深度学习 | PSO-GRUGAN-IDS(结合PSO、GRU和GAN的入侵检测系统分类器) | 网络流量数据 | 使用InSDN数据集进行评估 | NA | NA | NA | NA |
| 962 | 2025-03-28 |
Impact of Artificial Intelligence on Periodontology: A Review
2025-Mar, Cureus
DOI:10.7759/cureus.81162
PMID:40134460
|
review | 本文综述了人工智能在牙周病学中的应用及其影响 | 探讨了AI在牙周病诊断、治疗规划和患者管理中的创新应用 | 存在数据隐私、算法可靠性和临床验证需求等挑战 | 评估AI在牙周病学中的当前应用、优势、限制和未来可能性 | 牙周病学中的AI技术应用 | digital pathology | periodontal disease | machine learning, deep learning, computer vision | NA | radiographic images, clinical data | NA | NA | NA | NA | NA |
| 963 | 2025-03-27 |
High-dimensional imaging using combinatorial channel multiplexing and deep learning
2025-Mar-25, Nature biotechnology
IF:33.1Q1
DOI:10.1038/s41587-025-02585-0
PMID:40133518
|
research paper | 介绍了一种名为CombPlex的组合染色平台和算法框架,通过深度学习技术显著增加可测量的蛋白质数量 | 提出组合多路复用技术(CombPlex),通过组合染色和深度学习算法,将22种蛋白质的染色压缩至5个成像通道,实现准确重建 | 未提及具体的技术实施难度或在实际应用中的潜在问题 | 开发一种能够量化多种蛋白质在单细胞分辨率下的表达并保留空间信息的成像技术 | 多种组织和癌症类型中的蛋白质表达 | digital pathology | cancer | 组合染色平台(CombPlex)和深度学习算法 | 深度学习 | 图像 | 涉及多种组织和癌症类型,但未提及具体样本数量 | NA | NA | NA | NA |
| 964 | 2025-03-27 |
A statistical method for high-throughput emergence rate calculation for soybean breeding plots based on field phenotypic characteristics
2025-Mar-24, Plant methods
IF:4.7Q1
DOI:10.1186/s13007-025-01356-x
PMID:40122826
|
research paper | 本研究提出了一种基于无人机和地面测量数据的高通量大豆出苗率统计方法,旨在提高密集种植环境下育种筛选的效率和准确性 | 结合背景分割、深度学习目标检测和生长归一化思想,提出了一种新的高通量大豆出苗率统计方法,解决了现有方法在密集环境下的低通量、低效率和精度不足问题 | 方法在极端密集或高度重叠的种植环境下可能仍存在计数误差 | 开发一种高效、精确的大豆出苗率统计方法,以加速育种筛选过程 | 密集种植环境下的大豆幼苗 | digital agriculture | NA | 无人机遥感成像、深度学习目标检测 | Yolov8n | 遥感图像 | 未明确说明具体样本数量,但涉及密集种植环境下的大豆幼苗图像数据 | NA | NA | NA | NA |
| 965 | 2025-03-27 |
Construction and validation of a risk stratification model based on Lung-RADS® v2022 and CT features for predicting the invasive pure ground-glass pulmonary nodules in China
2025-Mar-23, Insights into imaging
IF:4.1Q1
DOI:10.1186/s13244-025-01937-3
PMID:40121609
|
研究论文 | 基于Lung-RADS® v2022和CT特征构建并验证了一种用于预测中国纯磨玻璃肺结节侵袭性的风险分层模型 | 结合Lung-RADS® v2022框架和GGN-血管关系类型(GVR),建立了补充性cLung-RADS® v2022模型,显著提高了对纯磨玻璃结节侵袭性的预测性能 | 研究样本量相对有限(526例患者,572个肺结节),且仅在中国人群中进行验证 | 开发并验证一种改进的风险分层模型,用于预测纯磨玻璃肺结节的侵袭性 | 纯磨玻璃肺结节(pGGNs) | 数字病理学 | 肺癌 | CT成像 | cLung-RADS® v2022 | 医学影像 | 526名患者(共572个肺结节),分为训练集(169例)和验证集(403例) | NA | NA | NA | NA |
| 966 | 2025-03-27 |
Prolonged water body types dataset of urban agglomeration in central China from 1990 to 2021
2025-Mar-22, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04794-3
PMID:40121204
|
research paper | 该研究利用Landsat卫星数据和弱监督深度学习技术,生成了1990-2021年间长江中游城市群多种内陆水体的年度地图 | 采用弱监督深度学习技术进行长期水体类型制图,并提供了高精度、长时间跨度的水体分类系统 | NA | 为水资源管理和湿地保护提供数据支持 | 长江中游城市群的内陆水体 | machine learning | NA | 弱监督深度学习 | NA | 卫星图像 | 14000个验证点 | NA | NA | NA | NA |
| 967 | 2025-03-27 |
Predicting response to neoadjuvant chemotherapy in muscle-invasive bladder cancer via interpretable multimodal deep learning
2025-Mar-22, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-01560-y
PMID:40121304
|
研究论文 | 开发了一种可解释的基于图的多模态晚期融合深度学习框架(GMLF),用于预测肌肉浸润性膀胱癌(MIBC)对新辅助化疗的反应 | 结合组织病理学、细胞类型数据和基因表达谱,发现了新的组织病理学、细胞和分子决定因素,包括TP63、CCL5和DCN等关键基因特征 | 研究基于特定临床试验(SWOG S1314-COXEN)的数据,可能限制了结果的普遍性 | 提高肌肉浸润性膀胱癌患者对新辅助化疗反应的预测准确性,优化治疗策略 | 肌肉浸润性膀胱癌(MIBC)患者 | 数字病理学 | 膀胱癌 | RNA测序 | GMLF(基于图的多模态晚期融合深度学习框架) | 图像、基因表达数据 | 来自SWOG S1314-COXEN临床试验的数据(具体样本数量未提及) | NA | NA | NA | NA |
| 968 | 2025-03-27 |
Characterizing multivariate regional hubs for schizophrenia classification, sex differences, and brain age estimation using explainable AI
2025-Mar-04, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.02.28.25323105
PMID:40093221
|
research paper | 该研究利用结构MRI、人口统计学和可解释人工智能(AI)技术,探索精神分裂症分类、性别差异和脑年龄的多变量区域模式 | 结合深度学习模型与SHAP方法,识别与精神分裂症分类、性别差异及脑年龄预测相关的个性化多变量脑区模式 | 未提及样本量是否足够大以覆盖不同亚组人群,以及模型在其他独立数据集上的验证情况 | 研究精神分裂症分类、性别差异和脑年龄预测的神经生物学机制 | 精神分裂症患者和健康对照者的脑结构MRI数据 | digital pathology | schizophrenia | structural MRI, explainable AI | SVC, KNN, DL, LR, RR, SVR | image, demographics | NA | NA | NA | NA | NA |
| 969 | 2025-03-27 |
An integrative nomogram based on MRI radiomics and clinical characteristics for prognosis prediction in cervical spinal cord Injury
2025-Mar, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-024-08609-8
PMID:39672993
|
研究论文 | 基于MRI影像组学和临床特征构建预测颈脊髓损伤患者预后的列线图模型 | 结合手动定义的影像组学特征和通过深度学习迁移学习方法提取的特征,构建了一个综合预测模型 | 样本量相对较小(168例患者),且仅使用了T1WI和T2WI两种MRI序列 | 预测颈脊髓损伤患者的预后 | 168名颈脊髓损伤患者 | 数字病理学 | 颈脊髓损伤 | MRI影像组学分析,深度学习迁移学习 | Lasso回归,深度学习模型 | MRI图像(T1WI和T2WI),临床数据 | 168名颈脊髓损伤患者 | NA | NA | NA | NA |
| 970 | 2025-03-27 |
Deep learning model for automated detection of fresh and old vertebral fractures on thoracolumbar CT
2025-Mar, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-024-08623-w
PMID:39708132
|
研究论文 | 开发了一种深度学习系统,用于在胸腰椎CT上自动分割压缩性骨折椎体并区分新鲜和陈旧性骨折 | 使用3D V-Net进行图像分割,结合ResNet和DenseNet模型进行分类,能够自动且准确地识别和分类椎体骨折 | 样本量相对较小,外部验证和前瞻性验证的样本数量有限 | 开发一种自动化系统,辅助临床医生识别和分类胸腰椎压缩性骨折 | 胸腰椎骨折患者 | 计算机视觉 | 骨科疾病 | CT成像 | 3D V-Net, ResNet, DenseNet | 医学影像 | 训练数据集238个椎体,内部验证59个,外部验证34个,前瞻性验证48个 | NA | NA | NA | NA |
| 971 | 2025-03-27 |
Ensemble approach to deep learning seabed classification using multichannel ship noisea)
2025-Mar-01, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/10.0036221
PMID:40135961
|
研究论文 | 本研究利用合成数据训练神经网络,通过多通道水听器声谱图预测海底类型,并应用于实际测量数据 | 采用集成建模和多通道数据处理技术提高预测性能,并量化多通道数据对神经网络训练的影响 | 实验中水声速仅轻微向上折射,预期在更复杂声速剖面下多通道的优势会更明显 | 开发一种基于深度学习的海底分类方法 | 海底类型 | 机器学习 | NA | 多通道水听器声谱图分析 | ResNet-18 | 声谱图 | SBCEX 2017实验测量数据 | NA | NA | NA | NA |
| 972 | 2025-03-26 |
Deep-Learning-Assisted Understanding of the Self-Assembly of Miktoarm Star Block Copolymers
2025-Mar-25, ACS nano
IF:15.8Q1
DOI:10.1021/acsnano.5c00811
PMID:40074545
|
research paper | 该研究应用深度学习技术解析了AB型星形嵌段共聚物PEO-PS在蒸发诱导自组装系统中的相行为 | 首次将深度学习技术应用于复杂拓扑结构嵌段共聚物的自组装行为研究,成功预测了三维合成场图并揭示了参数与结构之间的关联 | 研究仅针对特定类型的星形嵌段共聚物(PEO-PS),结论可能不适用于其他拓扑结构的共聚物 | 探索复杂拓扑结构嵌段共聚物的自组装行为规律 | AB型星形嵌段共聚物PEO-PS | soft matter science | NA | deep learning | neural network | experimental data | 包含两种聚合物特性和三种合成条件参数的数据集 | NA | NA | NA | NA |
| 973 | 2025-03-26 |
From 1-D to 3-D: LIBS Pseudohyperspectral Data Cube Deep Learning Mechanism Used in Nuclear Metal Materials Classification
2025-Mar-25, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c05707
PMID:40085530
|
研究论文 | 提出一种名为LIBS伪高光谱数据立方体的新光谱数据机制,将1-D LIBS光谱转化为3-D数据立方体,以提高核金属材料分类的准确性 | 引入两个额外维度捕捉光谱变化信息,使LIBS系统在处理不稳定光谱时更加稳健,并充分利用深度学习算法 | 未明确提及具体局限性 | 提高核电站中不稳定光谱的分类准确性 | 核金属材料 | 机器学习 | NA | LIBS(激光诱导击穿光谱) | 深度学习算法(含注意力机制) | 光谱数据 | NA | NA | NA | NA | NA |
| 974 | 2025-03-26 |
Leveraging Deep Learning for Urban Health Insights: Transforming Street-Level Imagery into Cardiovascular Risk Indicators
2025-Mar-25, European journal of preventive cardiology
IF:8.4Q1
DOI:10.1093/eurjpc/zwaf148
PMID:40130376
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 975 | 2025-03-26 |
DASNet: A Convolutional Neural Network with SE Attention Mechanism for ccRCC Tumor Grading
2025-Mar-24, Interdisciplinary sciences, computational life sciences
DOI:10.1007/s12539-025-00693-8
PMID:40126867
|
research paper | 该研究提出了一种名为DASNet的卷积神经网络,结合SE注意力机制,用于通过CT图像对透明细胞肾细胞癌(ccRCC)进行分级 | 引入了Domain Adaptive Squeeze-and-Excitation Network (DASNet),结合SE注意力机制和域对抗神经网络(DANNs)来提高分类准确性和模型的泛化能力 | 未提及具体的数据集规模或潜在的过拟合问题 | 开发一种非侵入性且高效的ccRCC分级方法,以促进早期检测和治疗干预 | 透明细胞肾细胞癌(ccRCC)的CT图像 | digital pathology | renal cell carcinoma | Computed Tomography (CT), deep learning, machine learning | CNN, EfficientNet, RegNet, DANN | image | NA | NA | NA | NA | NA |
| 976 | 2025-03-26 |
Effectiveness Evaluation for Clinical Depression Detection Using Deep Learning Based Synthetic House-Tree-Person Test
2025-Mar-24, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3553502
PMID:40126963
|
研究论文 | 本文介绍了一种基于深度学习的合成屋树人测试(S-HTP)的抑郁症检测方法DeHTP,旨在减少诊断过程中的主观影响 | 提出了一种无需人际互动的灵活便捷的抑郁症检测方法DeHTP,其性能优于传统的人工S-HTP分析,并揭示了22个与抑郁症相关的绘图特征 | 方法的有效性可能受到分析师专业能力的限制 | 开发一种基于深度学习的抑郁症检测方法,以减少诊断过程中的主观影响 | 抑郁症患者 | 数字病理学 | 抑郁症 | 深度学习 | DeHTP | 图像 | 基于先前研究中与抑郁症相关的50个结论的指南 | NA | NA | NA | NA |
| 977 | 2025-03-26 |
Deep Learning-Assisted Diagnosis of Placenta Accreta Spectrum Using the DenseNet-121 Model: A Multicenter, Retrospective Study
2025-Mar-24, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01475-w
PMID:40128503
|
研究论文 | 探讨基于MRI的深度学习成像在预测高风险孕妇胎盘植入谱(PAS)中的诊断价值 | 使用DenseNet-121模型进行深度学习辅助诊断,与传统临床模型或机器学习放射组学模型相比表现出更好的性能 | 研究为回顾性设计,样本量相对较小(263例患者) | 评估深度学习模型在预测胎盘植入谱(PAS)中的诊断效能 | 高风险孕妇中的疑似胎盘植入患者 | 数字病理 | 胎盘植入谱(PAS) | MRI成像 | DenseNet-121, SVM, KNN, RF, LGBM | 医学影像 | 263例患者(170例训练集,93例外部验证集) | NA | NA | NA | NA |
| 978 | 2025-03-26 |
Augmenting atmospheric turbulence effects on thermal-adapted deep object detection models
2025-Mar-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-86830-1
PMID:40121214
|
research paper | 本文探讨了大气湍流图像增强技术在提高热适应和基于深度学习的物体检测模型在大气湍流条件下的准确性和鲁棒性方面的有效性 | 研究了三种不同的基于近似的湍流模拟器(几何、Zernike-based和P2S)生成的湍流训练和测试数据集,并评估了三种最先进的深度学习物体检测模型(RTMDet-x、DINO-4scale和YOLOv8-x)在这些数据集上的性能 | NA | 提高物体检测模型在大气湍流条件下的准确性和鲁棒性 | 热适应和基于深度学习的物体检测模型 | computer vision | NA | turbulence image augmentation techniques | RTMDet-x, DINO-4scale, YOLOv8-x | image | NA | NA | NA | NA | NA |
| 979 | 2025-03-26 |
High-resolution image reflection removal by Laplacian-based component-aware transformer
2025-Mar-22, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-94464-6
PMID:40121298
|
research paper | 提出了一种基于Laplacian金字塔和transformer的高分辨率图像反射去除框架LapCAT | 利用Laplacian金字塔网络去除高频反射模式,并通过反射感知的多头自注意力机制设计组件可分离transformer块(CSTB) | NA | 解决高分辨率图像反射去除问题,提升照片拍摄质量和场景理解 | 高分辨率图像中的反射模式 | computer vision | NA | Laplacian金字塔网络,transformer | transformer (CSTB) | image | 多个基准数据集 | NA | NA | NA | NA |
| 980 | 2025-10-07 |
Protocol to infer off-target effects of drugs on cellular signaling using interactome-based deep learning
2025-Mar-21, STAR protocols
IF:1.3Q4
DOI:10.1016/j.xpro.2024.103573
PMID:39823233
|
研究论文 | 提出基于相互作用组深度学习推断药物细胞信号传导脱靶效应的实验方案 | 首次将人工神经网络与相互作用组数据结合,系统性地预测药物转录活性并解释脱靶作用机制 | 仅以lestaurtinib在A375细胞系中的FOXM1脱靶效应作为案例研究,需要进一步验证通用性 | 理解药物作用机制并预测其脱靶效应 | 药物-靶标相互作用及细胞转录反应 | 机器学习 | NA | 相互作用组分析,转录活性检测 | 人工神经网络 | 转录组数据,相互作用组数据 | NA | NA | NA | NA | NA |