深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1354 篇文献,本页显示第 1161 - 1180 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1161 2025-03-14
Rolling bearing remaining useful life prediction using deep learning based on high-quality representation
2025-Mar-10, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于深度学习的方法,用于预测滚动轴承的剩余使用寿命(RUL),以提高旋转机械的可靠性和性能 结合一维深度卷积自编码器(1D-DCAE)和多层双向长短期记忆网络(Bi-LSTM)与时间模式注意力机制(TPA),有效提取振动信号中的高质量健康指标(HIs)并捕捉时间依赖性 实验仅在PHM2012轴承数据集上进行,未涉及其他数据集或实际工业环境中的验证 提高滚动轴承剩余使用寿命(RUL)预测的准确性和鲁棒性 滚动轴承 机器学习 NA 深度学习 1D-DCAE, Bi-LSTM, TPA 振动信号 PHM2012轴承数据集 NA NA NA NA
1162 2025-03-14
The optimization of youth football training using deep learning and artificial intelligence
2025-Mar-10, Scientific reports IF:3.8Q1
研究论文 本研究旨在通过利用先进的深度学习和人工智能技术提高青少年足球训练的效果和成果 构建了基于深度学习卷积神经网络(CNNs)的青少年足球训练关键点检测模型,并分析了人工智能在校园足球训练中的应用场景 研究中未提及样本的具体数量和多样性,可能影响模型的泛化能力 提高青少年足球训练的效果和成果 青少年足球训练 机器学习 NA 深度学习卷积神经网络(CNNs) CNN 图像 五家技术公司和三十名体育教师 NA NA NA NA
1163 2025-03-14
An improved transformer based traffic flow prediction model
2025-Mar-10, Scientific reports IF:3.8Q1
研究论文 本文提出了一种改进的基于Transformer的交通流量预测模型,旨在解决现有深度学习模型在交通流量预测中的局限性 提出了IEEAFormer技术,通过嵌入层捕捉交通数据中的隐含信息,采用时间环境感知自注意力机制替代传统的多头自注意力机制,并使用独特的图掩码矩阵和平行空间自注意力架构同时捕捉数据中的长短期空间依赖关系 未提及具体局限性 提高交通流量预测的准确性,以提升城市交通系统的效率 交通流量数据 机器学习 NA Transformer架构,时间环境感知自注意力机制,图掩码矩阵 IEEAFormer 交通流量数据 四个真实世界的交通数据集 NA NA NA NA
1164 2025-03-13
Intelligent optoelectrowetting digital microfluidic system for real-time selective parallel manipulation of biological droplet arrays
2025-Mar-11, Lab on a chip IF:6.1Q2
研究论文 本文提出了一种结合光电润湿技术和深度学习算法的智能控制系统,用于实时选择性并行操作生物液滴阵列 结合光电润湿技术与深度学习算法,实现液滴的实时检测、自动生成虚拟电极控制移动,以及液滴阵列的高效跟踪 当前技术依赖于操作员手动定位液滴、绘制光学图案和预设液滴移动路径,缺乏实时反馈和独立液滴控制能力,可能导致液滴失控和污染 开发一种智能控制系统,用于自动化操作离散液滴,提高数字微流控技术在生物医学等领域的应用 生物液滴阵列 数字病理学 NA 光电润湿技术、深度学习算法 目标检测算法、跟踪算法 图像 NA NA NA NA NA
1165 2025-03-13
A large-scale open image dataset for deep learning-enabled intelligent sorting and analyzing of raw coal
2025-Mar-08, Scientific data IF:5.8Q1
研究论文 本文介绍了一个大规模开源的原煤图像数据集DsCGF,用于支持深度学习驱动的原煤智能分选和分析 提出了一个大规模、多层次的标注原煤图像数据集,填补了智能选煤领域缺乏准确大规模数据的空白 数据集仅涵盖中国三个代表性矿区的样本,可能无法完全代表其他地区的原煤特征 推动中国能源转型,实现碳达峰和碳中和战略目标下的智能选煤技术发展 原煤图像 计算机视觉 NA 深度学习 NA 图像 超过27万张可见光图像,来自中国三个代表性矿区 NA NA NA NA
1166 2025-03-13
Probabilistic and deep learning approaches for conductivity-driven nanocomposite classification
2025-Mar-07, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种结合贝叶斯技术和深度学习的混合方法,用于改进纳米复合材料的分类,特别是评估其导电性能 提出了一种结合贝叶斯网络(BN)和基于Transformer架构的循环神经网络(RNN)的混合模型,以量化并报告认知不确定性,从而提高分类准确性 研究主要关注方法学上的进展,实验结果的广泛适用性尚未验证 改进纳米复合材料的分类方法,特别是评估其导电性能 纳米复合材料 机器学习 NA 贝叶斯网络(BN),循环神经网络(RNN),Transformer架构 贝叶斯网络(BN),循环神经网络(RNN) NA NA NA NA NA NA
1167 2025-03-11
Author Correction: Signature-based intrusion detection using machine learning and deep learning approaches empowered with fuzzy clustering
2025-Mar-07, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
1168 2025-03-13
SwinConvNeXt: a fused deep learning architecture for Real-time garbage image classification
2025-Mar-07, Scientific reports IF:3.8Q1
研究论文 本文提出了一种名为SwinConvNeXt的融合深度学习架构,用于实时垃圾图像分类 结合了增强的Swin Transformer、改进的ConvNeXt和空间注意力机制,有效提取垃圾图像的全局和局部特征,提高了分类准确性 模型在处理视觉相似度高且大小不一的物体时可能存在挑战 开发一种高效且可持续的实时垃圾管理系统 垃圾图像 计算机视觉 NA 深度学习 SwinConvNeXt 图像 公开的垃圾分类数据集 NA NA NA NA
1169 2025-03-13
Laser-Induced Breakdown Spectroscopy and a Convolutional Neural Network Model for Predicting Total Iron Content in Iron Ores
2025-Mar, Applied spectroscopy IF:2.2Q2
研究论文 本文提出了一种结合激光诱导击穿光谱(LIBS)和卷积神经网络(CNN)模型的方法,用于预测铁矿石中的总铁含量 使用CNN模型辅助LIBS技术,显著提高了总铁含量预测的准确性,并减少了建模时间 未提及具体局限性 提高LIBS技术在铁矿石总铁含量预测中的准确性 铁矿石样品 机器学习 NA 激光诱导击穿光谱(LIBS) 卷积神经网络(CNN) 光谱数据 339批来自五个国家的铁矿石样品,收集了2034个代表性光谱 NA NA NA NA
1170 2025-03-13
Deep-Learning-Enabled Fast Raman Identification of the Twist Angle of Bi-Layer Graphene
2025-Mar, Small (Weinheim an der Bergstrasse, Germany)
研究论文 本文提出了一种结合拉曼光谱和深度学习的数据驱动策略,用于快速、无损地解码和预测双层石墨烯的扭转角度 利用深度学习处理高维拉曼数据,提取隐藏信息以实现精确的扭转角度识别,并将该方法扩展到二维平面,实现单个样品内的精确定向映射 NA 开发一种高效、无损的方法来识别双层石墨烯的扭转角度,并推广到其他角度依赖的二维材料研究 双层石墨烯(TBG) 材料光谱学与分析 NA 拉曼光谱 深度学习模型 拉曼光谱数据 NA NA NA NA NA
1171 2025-03-13
Deep learning-based spatio-temporal fusion for high-fidelity ultra-high-speed X-ray radiography
2025-Mar-01, Journal of synchrotron radiation IF:2.4Q3
研究论文 本文探讨了基于深度学习的时空融合框架,用于融合两种互补的X射线图像序列,以重建具有高空间分辨率、高帧率和高保真度的目标图像序列 提出了一种新的深度学习时空融合框架,通过融合不同配置的X射线视频,显著提高了超高速X射线成像实验的性能和科学价值 需要与高速相机适当结合,才能充分发挥该方法的优势 提高超高速X射线成像实验的空间分辨率、帧率和保真度 X射线图像序列 计算机视觉 NA 深度学习 深度学习模型 图像 两个独立的X射线数据集 NA NA NA NA
1172 2025-03-13
Multi-stage deep learning artifact reduction for parallel-beam computed tomography
2025-Mar-01, Journal of synchrotron radiation IF:2.4Q3
研究论文 本文提出了一种多阶段深度学习方法来减少平行束计算机断层扫描(CT)中的伪影 在断层扫描管道的每个阶段(投影、正弦图和重建)引入独立的深度学习模型,以数据驱动的方式局部解决特定伪影,并采用旁路连接减少误差传播 未明确提及具体局限性 提高同步辐射CT图像质量,减少伪影 平行束计算机断层扫描图像 计算机视觉 NA 深度学习 深度学习模型 图像 模拟和真实世界数据集 NA NA NA NA
1173 2025-03-12
Dual-Component Gas Sensor Based on Light-Induced Thermoelastic Spectroscopy and Deep Learning
2025-Mar-11, Analytical chemistry IF:6.7Q1
研究论文 本文首次报道了一种基于光诱导热弹性光谱和深度学习的乙炔-二氧化碳双组分气体传感器 首次结合光诱导热弹性光谱和深度学习技术,开发了一种新型的双组分气体传感器,并采用了SSA-CNN-BiGRU-Attention模型来提高浓度反演的准确性 研究仅限于乙炔和二氧化碳两种气体的检测,未来需要扩展到更多气体成分的研究 开发一种高精度的双组分气体传感器,用于气体浓度的精确反演 乙炔和二氧化碳气体 传感器技术 NA 光诱导热弹性光谱 SSA-CNN-BiGRU-Attention 光谱数据 NA NA NA NA NA
1174 2025-03-12
Deep Learning-Assisted Ultrasensitive Detection of Gold Nanoparticles Using Light Microscopy Images Captured by a Cellphone Camera
2025-Mar-11, Analytical chemistry IF:6.7Q1
研究论文 本研究提出了一种使用手机摄像头捕获的暗场散射光显微镜图像,结合深度学习技术,实现金纳米颗粒(AuNPs)的超灵敏检测和定量的方法 首次将深度学习技术应用于手机摄像头捕获的暗场散射光显微镜图像,实现了对120 nm金纳米颗粒的超灵敏检测和定量 研究仅针对120 nm的金纳米颗粒,未验证其他尺寸或类型的纳米颗粒的检测效果 开发一种简单、易获取且高灵敏度的金纳米颗粒检测平台 金纳米颗粒(AuNPs) 计算机视觉 NA 暗场散射光显微镜 深度学习模型(分类和回归模型) 图像 4个不同浓度的样本 NA NA NA NA
1175 2025-03-12
Deep learning network for NMR spectra reconstruction in time-frequency domain and quality assessment
2025-Mar-08, Nature communications IF:14.7Q1
研究论文 本文提出了一种联合时频域的深度学习网络JTF-Net,用于核磁共振(NMR)光谱的重建和质量评估 JTF-Net结合了时域和频域特征,相比传统算法和单域深度学习方法,在蛋白质光谱的重建上表现更优;同时提出了无需参考光谱的质量评估指标REQUIRER 当前深度学习方法仅关注单域重建,存在峰值丢失和伪影峰等问题,且缺乏全采样光谱使得重建光谱的质量难以评估 提高核磁共振光谱的重建质量和评估效率 核磁共振光谱 机器学习 NA 深度学习 JTF-Net 光谱数据 NA NA NA NA NA
1176 2025-03-11
Accelerating polymer self-consistent field simulation and inverse DSA-lithography with deep neural networks
2025-Mar-14, The Journal of chemical physics IF:3.1Q1
研究论文 本文提出了一种基于深度学习的方法,用于加速自洽场理论(SCFT)模拟,并通过深度神经网络(DNN)直接映射早期SCFT结果到平衡结构,显著减少了模拟时间 通过深度神经网络直接映射早期SCFT结果到平衡结构,避免了耗时的SCFT迭代,显著提高了模拟效率 需要生成训练数据集,且训练网络的成本可能较高 加速自洽场理论(SCFT)模拟,提高计算效率 嵌段共聚物(BCP)自组装 机器学习 NA 深度神经网络(DNN) DNN 模拟数据 NA NA NA NA NA
1177 2025-10-07
AI-Driven Drug Discovery for Rare Diseases
2025-Mar-10, Journal of chemical information and modeling IF:5.6Q1
综述 探讨人工智能在罕见病药物发现领域的应用潜力与最新进展 系统阐述AI技术如何通过药物重定位、生物标志物发现等方法突破传统药物研发模式,填补罕见病研究领域的文献空白 作为综述文章,未涉及具体实验验证和原始数据 加速罕见病的治疗开发并改善患者预后 罕见病及其治疗方法的开发 机器学习 罕见病 机器学习(ML), 深度学习(DL) NA NA 全球3亿患者(基于流行病学数据) NA NA NA NA
1178 2025-03-11
Obtaining full-arch implant scan with smartphone video and deep learning: An in vitro investigation on trueness and precision
2025-Mar-08, Journal of prosthodontics : official journal of the American College of Prosthodontists
研究论文 本研究探讨了使用智能手机摄像头和深度学习模型生成的全牙弓种植体扫描的准确性 结合智能手机视频和深度学习模型生成全牙弓种植体扫描,展示了与口腔内扫描仪相似的准确性 该方法的准确性尚不足以用于临床应用 研究智能手机摄像头和深度学习模型生成全牙弓种植体扫描的准确性 上颌无牙模型上的6个种植体和扫描体 计算机视觉 NA 深度学习 深度学习模型 视频 10次重复实验 NA NA NA NA
1179 2025-03-11
Systematic Review and Meta-Analysis of Radiation Dose Reduction Studies in Pediatric Head CT
2025-Mar-07, AJNR. American journal of neuroradiology
系统综述与荟萃分析 本文综述了降低儿童头部CT扫描中辐射剂量的研究,并提供了这些研究中辐射剂量减少百分比的荟萃分析 本文通过系统综述和荟萃分析,识别了降低儿童头部CT辐射剂量的最常用参数,并强调了临床适应症在比较剂量减少研究中的重要性 研究方案的异质性、不完整的方案/结果报告以及机构、扫描仪、患者人口统计和临床适应症的变异性限制了研究结果的普遍性 评估和总结降低儿童头部CT扫描中辐射剂量的策略和效果 儿童头部CT扫描 医学影像 儿科疾病 CT扫描、迭代重建技术 NA 医学影像数据 20项研究 NA NA NA NA
1180 2025-10-07
Impact of Downsampling Size and Interpretation Methods on Diagnostic Accuracy in Deep Learning Model for Breast Cancer Using Digital Breast Tomosynthesis Images
2025-Mar-06, The Tohoku journal of experimental medicine
研究论文 研究下采样尺寸和图像插值方法对基于数字乳腺断层摄影的深度学习模型诊断准确性的影响 首次系统评估不同下采样尺寸和五种插值方法对乳腺癌症诊断深度学习模型性能的影响 回顾性研究,样本量相对有限(499例患者) 优化深度学习模型的预处理步骤以提高乳腺癌症诊断准确性 接受乳腺断层摄影检查的患者 计算机视觉 乳腺癌 数字乳腺断层摄影 深度学习模型 医学图像 499例患者(29-90岁,平均50.5岁) NA NA AUC, 95%置信区间 NA
回到顶部