深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1439 篇文献,本页显示第 1341 - 1360 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1341 2025-03-05
Development of Deep Learning-Based Virtual Lugol Chromoendoscopy for Superficial Esophageal Squamous Cell Carcinoma
2025-Mar, Journal of gastroenterology and hepatology IF:3.7Q2
研究论文 本文开发了一种基于深度学习的虚拟Lugol染色内镜(V-LCE)方法,用于检测浅表性食管鳞状细胞癌(ESCC) 使用CycleGAN生成虚拟Lugol染色内镜图像,为浅表性食管鳞状细胞癌的诊断提供了一种新的辅助工具 V-LCE在病变检测、边缘识别和颜色差异方面的表现介于真实Lugol染色内镜(R-LCE)和白光内镜(WLE)之间,尚未达到R-LCE的水平 开发一种基于深度学习的虚拟Lugol染色内镜方法,以提高浅表性食管鳞状细胞癌的检测灵敏度 浅表性食管鳞状细胞癌(ESCC) 计算机视觉 食管癌 CycleGAN GAN 图像 六名内镜医师对WLE、R-LCE和V-LCE图像进行评分
1342 2025-03-05
GSCAT-UNET: Enhanced U-Net model with spatial-channel attention gate and three-level attention for oil spill detection using SAR data
2025-Mar, Marine pollution bulletin IF:5.3Q1
研究论文 本文提出了一种名为GSCAT-UNET的增强型U-Net模型,用于利用SAR数据进行油污检测和区分 GSCAT-UNET模型结合了空间-通道注意力门(SCAG)、三级注意力模块(TLM)和全局特征模块(GFM),以提高油污检测的准确性和鲁棒性 NA 提高油污检测的准确性和鲁棒性,以应对SAR数据的复杂性和不平衡数据集 油污及其类似物 计算机视觉 NA 深度学习 GSCAT-UNET SAR图像 1112张Sentinel-1双极化SAR图像及其标注图像(5类)
1343 2025-02-01
Shaping the future of MRI in upper abdominal imaging: The promise of deep learning reconstruction
2025-Mar, Diagnostic and interventional imaging IF:4.9Q1
NA NA NA NA NA NA NA NA NA NA NA NA
1344 2025-03-05
Feasibility of using Gramian angular field for preprocessing MR spectroscopy data in AI classification tasks: Differentiating glioblastoma from lymphoma
2025-Mar, European journal of radiology IF:3.2Q1
研究论文 本文探讨了使用Gramian角场将1D光谱转换为2D图像,作为卷积神经网络输入用于胶质母细胞瘤与淋巴瘤分类任务的可行性 首次将Gramian角场技术应用于MR光谱数据的预处理,以生成适合深度学习算法输入的2D图像 研究样本量较小,仅包括98名患者,且仅比较了傅里叶变换后的原始光谱和后处理拟合光谱的分类性能 探索MR光谱数据在神经网络分类任务中的应用潜力 胶质母细胞瘤和淋巴瘤患者 数字病理学 胶质母细胞瘤, 淋巴瘤 MR光谱, Gramian角场 卷积神经网络(CNN) 图像 98名患者(65名胶质母细胞瘤,33名淋巴瘤)
1345 2025-03-05
Fluid Inverse Volumetric Modeling and Applications From Surface Motion
2025-Mar, IEEE transactions on visualization and computer graphics IF:4.7Q1
研究论文 本研究提出了一种从可观测、可测量的自由表面运动中进行流体体积重建的框架 结合深度学习和传统模拟的优势,保持再现流体的引导运动和时间一致性,并利用3D CNN生成体积速度场 NA 开发一种从表面运动中进行流体体积重建的方法,并应用于图形学中的流体行为再现和场景重编辑 流体 计算机视觉 NA 深度学习,3D CNN 3D CNN 图像 NA
1346 2025-03-05
Specialized ECG data augmentation method: leveraging precordial lead positional variability
2025-Mar, Biomedical engineering letters IF:3.2Q2
研究论文 本文介绍了一种针对心电图(ECG)数据的专门数据增强技术,通过考虑12导联ECG中胸前导联之间的独特角度,提出了一种在临床环境中可能发生的情况下的数据增强方法,并用于训练深度学习模型以诊断多种心脏疾病 本文的创新点在于提出了一种专门针对ECG数据的数据增强技术,考虑了胸前导联之间的独特角度,并在多种数据集和任务中展示了其性能提升 本文的局限性在于未提及该方法在其他类型生物信号处理中的适用性,且未详细讨论其在更大规模数据集上的表现 研究目的是开发一种优化的数据增强技术,以提高ECG数据的深度学习模型诊断心脏疾病的准确性 研究对象是12导联ECG数据,特别是胸前导联之间的角度变化 生物信号处理 心血管疾病 数据增强技术 深度学习模型 ECG信号 NA
1347 2025-03-05
Reinforcement learning-based generative artificial intelligence for novel pesticide design
2025-Mar-01, Journal of advanced research IF:11.4Q1
研究论文 本研究提出了一种基于强化学习的生成人工智能框架,用于设计具有高结合亲和力的农药样分子 首次将生成人工智能应用于农药设计,提出了结合强化学习的框架,并成功设计出一种新型4-羟基苯基丙酮酸双加氧酶抑制剂 未提及具体样本量或实验数据规模 探索生成人工智能在农药设计中的应用,开发新型绿色农药 农药样分子 机器学习 NA 强化学习,蒙特卡洛树搜索算法 生成模型 化学分子数据 NA
1348 2025-03-04
Assessing the prognostic impact of body composition phenotypes on surgical outcomes and survival in patients with spinal metastasis: a deep learning approach to preoperative CT analysis
2025-Mar-01, Journal of neurosurgery. Spine
研究论文 本研究通过深度学习分析术前CT扫描,评估体成分表型对脊柱转移瘤手术患者预后和5年生存率的影响 首次使用深度学习管道分析术前CT扫描,识别肌肉和脂肪含量及组成,并将患者分为四种体成分表型组,揭示了体成分表型与手术结果及生存率的关系 样本量相对较小(102例),且为回顾性研究,可能存在选择偏倚 评估体成分表型对脊柱转移瘤手术患者预后和5年生存率的影响 接受脊柱转移瘤手术的患者 数字病理学 脊柱转移瘤 深度学习 深度学习管道 CT图像 102例患者
1349 2025-03-04
Ethical and security challenges in AI for forensic genetics: From bias to adversarial attacks
2025-Mar, Forensic science international. Genetics
研究论文 本文探讨了人工智能在法医遗传学中应用的伦理和安全挑战,特别是偏见和对抗性攻击问题 通过模拟场景展示了AI方法在生物地理祖先预测和亲缘关系推断中的潜在误导性,强调了伦理和安全挑战 研究主要基于模拟场景,可能无法完全反映真实世界的复杂性 评估AI在法医遗传学中的应用,特别是其潜在的偏见和对抗性攻击问题 法医遗传学中的AI模型 法医遗传学 NA 深度学习, 机器学习 NA 模拟数据 NA
1350 2024-12-21
Predicting Intracerebral Hemorrhage Outcomes Using Deep Learning Models to Extract Head CT Imaging Features
2025-Mar, Academic radiology IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA
1351 2025-03-03
Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data
2025-Mar, Stats IF:0.9Q3
研究论文 本文提出了一种基于f-散度的双向生成对抗网络tf-BiGAIN,用于高维时间序列数据中的缺失值填补 tf-BiGAIN引入了两个关键创新点:使用f-散度作为目标函数以增强模型的灵活性和适应性,以及使用双向门控循环单元以利用前后时间信息 NA 解决高维时间序列数据中缺失值填补的挑战 高维时间序列数据 机器学习 NA 生成对抗网络 tf-BiGAIN 时间序列数据 两个真实世界的时间序列数据集
1352 2025-03-02
Physics-driven deep learning for high-fidelity photon-detection ghost imaging
2025-Mar-01, Optics letters IF:3.1Q2
研究论文 本文提出了一种基于物理驱动的深度学习光子探测鬼成像方法,以提高在散射介质中的空间和深度分辨率 通过共同设计计算鬼成像系统和网络,将成像和重建更紧密地结合,以超越物理分辨率限制,并设计了具有注意力机制的特殊深度融合网络 NA 提高在散射介质中的光子探测成像的空间和深度分辨率 光子探测成像 计算机视觉 NA 深度学习 深度融合网络 图像 NA
1353 2025-03-02
Phantom-metasurface cooperative system trained by a deep learning network driven by a bound state for a magnetic resonance-enhanced system
2025-Mar-01, Optics letters IF:3.1Q2
研究论文 本研究开发了一种基于深度学习网络训练的高效体模超表面复合MRI增强系统,并在MHz频段实现了超表面的设计与控制 结合深度神经网络和电磁超表面,显著提高了超表面的设计效率,并在MRI系统中展示了巨大的应用潜力 NA 提高MRI成像速度和分辨率 MRI系统 医学影像 NA 深度学习网络 前向神经网络 电磁响应特性 NA
1354 2025-03-01
Decoding the effects of mutation on protein interactions using machine learning
2025-Mar, Biophysics reviews IF:2.9Q2
review 本文综述了利用机器学习预测突变对蛋白质相互作用影响的最新进展 综合评估了基于物理化学、机器学习和深度学习的预测方法,并探讨了未来发展方向 讨论了突变数据的局限性,包括偏差、数据质量和数据集大小 理解遗传变异如何影响蛋白质与其他生物分子之间的相互作用,以阐明疾病机制和开发靶向治疗 蛋白质相互作用及其突变效应 machine learning cancer machine learning, deep learning NA mutational data NA
1355 2025-02-28
Advanced deep learning techniques for recognition of dental implants
2025 Mar-Apr, Journal of oral biology and craniofacial research
研究论文 本研究评估了一种先进的深度学习技术DEtection TRanformer,用于识别牙科植入物 使用基于Transformer的深度学习技术DEtection TRanformer进行牙科植入物识别,这是一种新颖的应用 模型在未见过的验证数据上表现不佳,需要在准确性和效率之间进行优化 开发一种能够通过分析X光片图像来预测植入物类型的人工智能工具 牙科植入物 计算机视觉 NA 深度学习 DEtection TRanformer 图像 1138张图像,包含五种植入物类型,来自根尖和全景X光片
1356 2025-02-26
LiteMamba-Bound: A lightweight Mamba-based model with boundary-aware and normalized active contour loss for skin lesion segmentation
2025-Mar, Methods (San Diego, Calif.)
研究论文 本文提出了一种轻量级的基于Mamba的模型LiteMamba-Bound,用于皮肤病变分割,结合了边界感知和归一化主动轮廓损失 提出了Channel Attention Dual Mamba (CAD-Mamba)块和Reverse Attention Boundary Module,以及归一化主动轮廓损失函数,显著提升了模型性能 NA 提高皮肤病变分割的精度,特别是在医学图像中区分病变区域和健康皮肤 皮肤病变图像 计算机视觉 皮肤癌 深度学习 LiteMamba-Bound, CAD-Mamba, Reverse Attention Boundary Module 图像 两个皮肤图像数据集:ISIC2018和PH2
1357 2025-02-25
CATALYZE: a deep learning approach for cataract assessment and grading on SS-OCT images
2025-Mar-01, Journal of cataract and refractive surgery IF:2.6Q1
研究论文 本文提出了一种基于深度学习的方法CATALYZE,用于在SS-OCT图像上进行白内障评估和分级 开发了一种新的客观深度学习模型,用于基于SS-OCT扫描的白内障分级,并引入了临床显著性指数(CSI)作为评估指标 单中心研究,排除了有眼部手术史、角膜或视网膜疾病以及眼干燥症的患者 评估一种新的客观深度学习模型在白内障分级中的应用 白内障患者和对照组的眼睛 计算机视觉 白内障 SS-OCT扫描 深度学习模型 图像 548只眼睛(315名患者,年龄19至85岁)
1358 2025-02-25
Opportunistic assessment of steatotic liver disease in lung cancer screening eligible individuals
2025-Mar, Journal of internal medicine IF:9.0Q1
研究论文 本研究利用深度学习模型在肺癌筛查的胸部CT中评估脂肪肝病(SLD),并探讨其在重度吸烟者中的预后价值 首次在肺癌筛查的胸部CT中利用深度学习模型评估SLD,并发现SLD是重度吸烟者长期死亡率的独立预测因子 研究仅基于NLST参与者的数据,可能无法推广到其他人群 评估SLD在肺癌筛查中的预后价值 19,774名NLST参与者 数字病理 肺癌 深度学习 深度学习模型 CT图像 19,774名NLST参与者
1359 2025-02-24
Dynamic cycles between brain states during creative storytelling
2025-Mar, NeuroImage IF:4.7Q1
研究论文 本文通过功能性磁共振成像(fMRI)研究,探讨了创造性思维过程中不同脑状态之间的动态转换 通过fMRI和深度学习方法,揭示了创造性思维过程中自发思维和刻意思维之间的交替互动,以及不同脑状态之间的转换模式 样本量较小,仅包括41名大学生,可能限制了结果的普遍性 探讨创造性思维过程中不同脑状态之间的动态转换及其认知和神经机制 41名大学生 神经科学 NA 功能性磁共振成像(fMRI) 深度学习 脑成像数据 41名大学生
1360 2025-02-24
Beyond averaging: A transformer approach to decoding event related brain potentials
2025-Mar, NeuroImage IF:4.7Q1
研究论文 本研究评估了基于Transformer的深度学习方法在处理事件相关脑电位(ERPs)方面的潜力,与传统平均方法相比,该方法能提供更深入的神经信号分析 使用Transformer网络中的注意力机制,生成注意力图,揭示了传统平均方法未能发现的相关电位时间窗口 研究样本量较小,仅包含29名正常听力参与者,且实验设计局限于声音感知的特定情境 评估Transformer方法在分析事件相关脑电位(ERPs)中的应用效果 29名18至30岁正常听力参与者的脑电图(EEG)数据 机器学习 NA 脑电图(EEG) 卷积Transformer 脑电图(EEG)信号 29名正常听力参与者
回到顶部