深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1439 篇文献,本页显示第 1361 - 1380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1361 2025-02-24
Research of orthodontic soft tissue profile prediction based on conditional generative adversarial networks
2025-Mar, Journal of dentistry IF:4.8Q1
研究论文 本研究构建了一种新的条件生成对抗网络(CGAN)模型,用于预测正畸治疗后的侧面外观变化 提出了一种新的深度学习模型soft-P-CGAN,结合了条件向量输入模块、基于U-Net的生成器模块和基于PatchGAN的判别器模块,设计了软损失以增强软组织轮廓的生成,并通过多尺度特征金字塔提高图像质量 下颌区域的预测相对不准确 预测正畸治疗后的侧面外观变化 成人患者的侧位头颅X光片 计算机视觉 NA 条件生成对抗网络(CGAN) soft-P-CGAN 图像 NA
1362 2025-02-24
Automated diagnosis and classification of temporomandibular joint degenerative disease via artificial intelligence using CBCT imaging
2025-Mar, Journal of dentistry IF:4.8Q1
研究论文 本研究利用人工智能技术,通过CBCT影像实现颞下颌关节退行性疾病的自动诊断和分类 使用YOLOv10算法构建的AI模型能够检测颞下颌关节退行性疾病,并区分其典型的影像学特征,如侵蚀、骨赘、硬化和软骨下囊肿 模型在检测具有多个退行性疾病特征的影像时,准确率有所下降 实现颞下颌关节退行性疾病的自动诊断和分类 1018名患者的7357张CBCT影像 计算机视觉 颞下颌关节退行性疾病 CBCT成像 YOLOv10 影像 7357张CBCT影像(来自1018名患者)
1363 2025-02-23
Performance and efficiency of machine learning models in analyzing capillary serum protein electrophoresis
2025-Mar-01, Clinica chimica acta; international journal of clinical chemistry
研究论文 本文研究了机器学习模型在分析毛细血管血清蛋白电泳(SPEP)中的性能和效率,旨在通过人工智能模型提高M蛋白的分类和定位准确性 本文创新性地将U-Net与Transformer模型结合,用于M蛋白的分类和定位,展示了与临床专家相当的性能 研究依赖于单一数据集,且未探讨模型在其他类型疾病中的应用 开发人工智能诊断模型,以提高SPEP在M蛋白相关疾病诊断中的准确性和效率 毛细血管血清蛋白电泳(SPEP)数据 机器学习 M蛋白相关疾病 血清蛋白电泳(SPEP) XGB, U-Net, Transformer 电泳数据 85,026个SPEP结果用于训练和验证,1,079个样本用于测试
1364 2025-02-22
MicroRNA signature for early prediction of knee osteoarthritis structural progression using integrated machine and deep learning approaches
2025-Mar, Osteoarthritis and cartilage IF:7.2Q1
研究论文 本研究旨在开发一种基于miRNA的预后模型,用于识别膝关节骨关节炎(OA)结构进展者/非进展者,采用集成机器学习和深度学习工具 引入了一种新的miRNA预后模型,用于预测膝关节OA结构进展,结合了机器学习和深度学习技术 模型验证样本量较小(30个样本),可能需要更大规模的研究来进一步验证其泛化能力 开发一种基于miRNA的预后模型,用于预测膝关节OA的结构进展 膝关节OA患者 机器学习 骨关节炎 miRNA测序 人工神经网络(ANN) 血清miRNA数据、磁共振成像(MRI)和X射线数据 152名OAI参与者(91名进展者,61名非进展者)用于模型开发,30名独立参与者(14名进展者,16名非进展者)用于模型验证
1365 2025-02-21
ViroNia: LSTM based proteomics model for precise prediction of HCV
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文介绍了ViroNia,一种基于LSTM的蛋白质组学模型,用于高精度预测HCV病毒蛋白分类 ViroNia利用LSTM架构进行病毒蛋白分类,展示了其在分类任务中的高效性,并优于其他深度学习架构如Simple RNN、GRU、1d CNN和双向LSTM 尽管ViroNia在分类任务中表现出色,但其在更广泛数据集上的泛化能力尚未验证 开发高精度的病毒蛋白分类模型,以支持病毒研究和干预设计 HCV病毒蛋白 自然语言处理 NA LSTM LSTM 蛋白质序列 2250个蛋白质序列
1366 2025-02-21
Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种新的深度学习框架,用于提高乳腺癌早期检测的准确性 结合卷积神经网络(CNN)与特征选择和融合方法,自动从图像中学习并找到相关特征,从而超越现有方法 未提及具体的数据集大小或多样性限制 提高乳腺癌早期检测的准确性 乳腺癌的医学影像 计算机视觉 乳腺癌 深度学习 CNN 图像 NA
1367 2025-02-21
Deep learning image registration for cardiac motion estimation in adult and fetal echocardiography via a focus on anatomic plausibility and texture quality of warped image
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种深度学习图像配准方法,用于成人和胎儿超声心动图中的心脏运动估计,重点关注变形图像的解剖合理性和纹理质量 提出了一种新的深度学习图像配准框架,通过引入解剖形状编码约束和数据驱动的纹理约束,提高了变形图像的解剖合理性和纹理质量 尽管方法在成人和胎儿超声心动图中表现出色,但未提及在其他类型医学图像上的适用性 提高超声心动图中心脏运动估计的准确性和一致性 成人和胎儿超声心动图 计算机视觉 心血管疾病 深度学习图像配准(DLIR) 深度学习模型 图像 多人口胎儿数据集和公共CAMUS成人数据集
1368 2025-02-21
A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文比较了统计、放射组学和深度学习特征提取技术在医学图像分类中的应用效果 通过对比不同特征提取技术在多种医学影像模态下的表现,揭示了深度学习技术在准确性和速度上的优势 研究仅针对二分类问题,未涉及多分类或更复杂的医学图像分析任务 评估不同特征提取技术对医学图像分类模型性能的影响 H&E染色图像、胸部X光片和视网膜OCT图像 计算机视觉 NA 统计特征提取、放射组学特征提取、深度学习特征提取 PCA-LDA, ResNet50, DenseNet121 图像 NA
1369 2025-02-20
A deep learning method for total-body dynamic PET imaging with dual-time-window protocols
2025-Mar, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 本文开发了一种深度学习算法,能够从双时间窗协议预测动态图像,从而缩短动态正电子发射断层扫描(PET)的扫描时间 提出了一种双向序列到序列模型(Bi-AT-Seq2Seq),并引入注意力机制,显著优于单向或无注意力机制的模型 研究样本量相对较小,且仅限于肺结节和乳腺结节患者 缩短动态PET扫描时间,提高临床应用的可行性 70名肺结节或乳腺结节患者 医学影像分析 肺结节, 乳腺结节 动态PET/CT扫描 Bi-AT-Seq2Seq 医学影像 70名患者(32名男性,平均年龄53.61±13.53岁)
1370 2025-02-20
Deep learning-based intratumoral and peritumoral features for differentiating ocular adnexal lymphoma and idiopathic orbital inflammation
2025-Mar, European radiology IF:4.7Q1
研究论文 本文评估了基于深度学习的肿瘤内和肿瘤周围特征在区分眼附属器淋巴瘤(OAL)和特发性眼眶炎症(IOI)中的价值 使用基于注意力的融合模型融合了肿瘤内和肿瘤周围区域以及多个MR序列提取的特征,显著提高了诊断性能 研究中未发现肿瘤周围特征与肿瘤内特征在性能上有显著差异 评估深度学习在区分OAL和IOI中的应用价值 97名经病理学确认的OAL和IOI患者 数字病理学 眼附属器淋巴瘤, 特发性眼眶炎症 深度学习 基于注意力的融合模型 MR图像 97名患者(43名OAL,54名IOI)
1371 2025-02-20
Identifying influential nodes in brain networks via self-supervised graph-transformer
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于图变换器的自监督图重建框架(SSGR-GT),用于识别脑网络中的关键节点 采用自监督深度学习模型,无需手动特征提取,直接从数据中学习有意义的表示,结合图变换器提取脑图的局部和全局特征,并通过图融合技术结合功能和结构信息进行多模态分析 依赖于自监督学习的效果,可能受限于数据质量和模型训练过程 识别脑网络中的关键节点(I-nodes),以增强对脑工作机制的理解 脑网络中的关键节点 脑成像 NA 自监督深度学习,图变换器 Graph-Transformer 脑图数据 56个关键节点
1372 2025-02-20
Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本研究旨在通过实施先进的堆叠集成学习(SEL)方法,提高脑肿瘤(BT)检测和分割的准确性和分类效果 提出了一种名为SEL-DenseNet201的堆叠DenseNet201作为元模型,结合了六种不同的基础模型,以增强脑肿瘤MRI图像的分割性能 研究中未提及样本的具体数量,且未讨论模型在实际临床环境中的适用性和泛化能力 提高脑肿瘤检测和分割的准确性,以支持早期诊断和治疗规划 脑肿瘤的MRI图像 计算机视觉 脑肿瘤 MRI图像分析 DenseNet201, MobileNet-v3, 3D-CNN, VGG-16, VGG-19, ResNet50, AlexNet 图像 NA
1373 2025-02-20
A robust and generalized framework in diabetes classification across heterogeneous environments
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本研究提出了一种鲁棒的机器学习框架,用于在不同人群中预测糖尿病,使用PIMA和BD两个不同的数据集进行验证 提出了一个跨异构环境的糖尿病分类框架,通过数据集内、数据集间和部分融合数据集验证技术,全面评估模型的泛化能力和性能 模型在跨数据集验证时性能下降,尤其是在BD数据集上训练并在PIMA数据集上测试时,准确率仅为74% 开发一个鲁棒的机器学习框架,以提高糖尿病预测在不同人群中的泛化能力和准确性 女性人群中的糖尿病预测 机器学习 糖尿病 机器学习 XGBoost, Random Forest, Gradient Boosting, 深度学习模型 结构化数据 PIMA和BD两个数据集
1374 2025-02-20
Enhancing cardiovascular disease classification in ECG spectrograms by using multi-branch CNN
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出并比较了一维(1D)、二维(2D)卷积神经网络(CNN)和多分支卷积神经网络(MB-CNN)在从一维(1D)心电图(ECG)记录的频谱图中分类各种心血管疾病(CVD)的性能 提出了一种多分支卷积神经网络(MB-CNN),能够捕捉不同层次的抽象特征,从而提高了心血管疾病的分类精度 NA 提高从心电图频谱图中分类心血管疾病的准确性 心血管疾病(包括扩张型心肌病、肥厚型心肌病、心肌梗死和冠状动脉疾病) 计算机视觉 心血管疾病 连续小波变换(CWT) 1D CNN, 2D CNN, MB-CNN 图像(ECG频谱图) MIT-BIH数据库中的5类ECG记录
1375 2025-02-20
OCDet: A comprehensive ovarian cell detection model with channel attention on immunohistochemical and morphological pathology images
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种名为OCDet的卵巢细胞检测模型,该模型结合了通道注意力机制,能够在免疫组化和形态学病理图像上全面检测多种卵巢癌细胞 OCDet模型首次结合了通道注意力机制,能够高效提取病理特征,并在多种卵巢癌细胞的检测上表现出色 虽然OCDet在卵巢癌细胞检测上表现出色,但其在其他癌症类型上的应用潜力尚未完全验证 开发一种高效的深度学习框架,用于卵巢癌病理诊断中的多种细胞检测 卵巢癌相关的多种细胞,包括CD3、CD8、CD20阳性淋巴细胞、中性粒细胞和多倍体巨癌细胞 数字病理 卵巢癌 深度学习 CSPDarkNet结合Efficient Channel Attention模块 图像 未明确提及具体样本数量
1376 2025-02-20
A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种基于深度学习和注意力机制的计算机辅助检测框架,用于有效检测和分类疟疾寄生虫的所有感染阶段,并支持多物种识别 该研究扩展了YOLO-SPAM和YOLO-PAM模型,结合注意力机制,提高了疟疾寄生虫检测的准确性和诊断实用性 NA 开发一种自动化疟疾检测解决方案,以支持病理学家并增强现实世界中的诊断实践 疟疾寄生虫 计算机视觉 疟疾 深度学习 YOLO-SPAM, YOLO-PAM 图像 三个公开可用的数据集
1377 2025-02-20
Detecting IDH and TERTp mutations in diffuse gliomas using 1H-MRS with attention deep-shallow networks
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本研究开发了深度学习分类器,利用质子磁共振波谱(1H-MRS)和一维卷积神经网络(1D-CNN)架构来识别胶质瘤中的IDH和TERTp突变 使用注意力机制的深浅网络(ADSN)进行突变检测,并利用Grad-CAM技术解释模型的决策过程 样本量相对较小,仅包括225名患者 开发非侵入性方法,用于术前检测胶质瘤中的IDH和TERTp突变,以帮助预后和治疗计划 225名成人半球弥漫性胶质瘤患者的1H-MRS数据 数字病理学 胶质瘤 1H-MRS, 深度学习 1D-CNN, 注意力深浅网络(ADSN) 光谱数据 225名患者(117名IDH突变,108名IDH野生型;99名TERTp突变,100名TERTp野生型)
1378 2025-02-19
Prediction of Visual Acuity After Cataract Surgery by Deep Learning Methods Using Clinical Information and Color Fundus Photography
2025-Mar, Current eye research IF:1.7Q3
研究论文 本研究探讨了使用术前临床信息和彩色眼底摄影(CFP)通过深度学习方法预测白内障手术后视力的性能 结合了彩色眼底摄影和临床信息的多模态模型,用于预测白内障手术后的视力 多模态输入对预测性能的改善效果不明显,未来研究需要进一步明确多模态输入的影响 预测白内障手术后的视力 接受白内障手术的患者 计算机视觉 白内障 深度学习 Xception和下游神经网络 图像和临床数据 446名患者的673张眼底图像
1379 2025-02-19
DeepPD: A Deep Learning Method for Predicting Peptide Detectability Based on Multi-feature Representation and Information Bottleneck
2025-Mar, Interdisciplinary sciences, computational life sciences
研究论文 本文介绍了一种名为DeepPD的深度学习框架,用于基于多特征表示和信息瓶颈原则预测肽的可检测性 DeepPD结合了多特征表示和信息瓶颈原则,通过进化尺度建模2(ESM-2)提取肽的语义信息,并整合序列和进化信息构建特征空间,有效减少了特征空间的冗余 NA 预测肽的可检测性,以改进蛋白质组学中的基本任务 机器学习 NA 进化尺度建模2(ESM-2) 深度学习 序列数据 多个数据集
1380 2025-02-17
A deep-learning system integrating electrocardiograms and laboratory indicators for diagnosing acute aortic dissection and acute myocardial infarction
2025-Mar-15, International journal of cardiology IF:3.2Q2
研究论文 本研究开发了一种多模态深度学习模型,整合心电图(ECG)信号和实验室指标,以提高急性A型主动脉夹层(AAD-type A)和急性心肌梗死(AMI)的诊断准确性 通过融合ECG特征和实验室指标,利用深度学习模型提高诊断准确性,为心血管疾病的快速诊断提供了新工具 研究样本量相对较小,且仅在单一医院进行,可能影响模型的泛化能力 提高急性A型主动脉夹层和急性心肌梗死的诊断准确性 急性A型主动脉夹层(AAD-type A)和急性心肌梗死(AMI)患者 机器学习 心血管疾病 深度学习 ResNet-34, RandomForest, XGBoost, LightGBM ECG信号和实验室指标 训练和验证集:136例AAD-type A和141例AMI患者;前瞻性测试集:30例AMI和32例AAD-type A患者
回到顶部