深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1511 篇文献,本页显示第 1381 - 1400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1381 2025-03-06
Automatic Calculation of Cervical Spine Parameters Using Deep Learning: Development and Validation on an External Dataset
2025-Mar, Global spine journal IF:2.6Q1
研究论文 本研究开发了一种深度学习模型,用于从颈椎侧位X光片中自动计算重要的脊柱参数 开发了一种能够从不同机构获取的图像中进行准确预测的深度学习模型,展示了其鲁棒性和高度泛化能力 研究仅使用了两个数据集进行训练和验证,样本量相对较小,可能影响模型的广泛适用性 开发并验证一种深度学习模型,用于自动计算颈椎侧位X光片中的脊柱参数 颈椎侧位X光片 计算机视觉 颈椎疾病 深度学习 深度学习模型 图像 1498张图像用于训练,79张图像用于外部验证
1382 2025-03-06
Predicting Progression in Adolescent Idiopathic Scoliosis at the First Visit by Integrating 2D Imaging and 1D Clinical Information
2025-Mar, Global spine journal IF:2.6Q1
研究论文 本研究旨在通过整合患者首次就诊时的1D临床信息和2D影像数据,预测青少年特发性脊柱侧弯(AIS)的进展 首次提出了一种多维输入模型,结合了1D临床数据和2D影像数据,用于预测AIS的进展,并采用了改进的CapsuleNet架构 研究样本量相对较小,且仅限于接受支具治疗的患者 预测青少年特发性脊柱侧弯(AIS)的进展,以辅助临床医生个性化治疗 青少年特发性脊柱侧弯(AIS)患者 数字病理 脊柱侧弯 深度学习 CapsuleNet 1D临床数据和2D影像数据 463名AIS患者
1383 2025-03-06
Urban fabric decoded: High-precision building material identification via deep learning and remote sensing
2025-Mar, Environmental science and ecotechnology IF:14.0Q1
研究论文 本文介绍了一种利用深度学习和遥感技术进行高精度建筑材料识别的新框架 该框架结合了最新的传感技术和深度学习,能够利用遥感数据和Google街景图像识别屋顶和外墙材料,展示了模型在不同地理环境和建筑风格中的可扩展性和适应性 模型的训练和验证主要基于丹麦城市的数据,可能在其他地区的适用性需要进一步验证 旨在通过高精度建筑材料识别为城市环境中的碳减排、建筑改造和循环经济策略提供信息 丹麦城市(如欧登塞、哥本哈根、奥胡斯和奥尔堡)的建筑材料 计算机视觉 NA 深度学习 深度学习模型 遥感数据和Google街景图像 丹麦多个城市的建筑数据集
1384 2025-03-06
Learning Ordinal-Hierarchical Constraints for Deep Learning Classifiers
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了两种新的序数-层次深度学习模型(HCLM和HOBD),用于同时学习层次和序数约束,以提高泛化性能 提出了两种新的深度学习模型(HCLM和HOBD),能够同时学习层次和序数约束,填补了现有深度学习模型在这方面的空白 NA 提高深度学习分类器在具有序数结构的层次分类问题中的泛化性能 具有序数结构的层次分类问题 机器学习 NA 深度学习 HCLM, HOBD NA 四个实际应用案例数据集(涉及工业、生物医学、计算机视觉和金融领域)
1385 2025-03-06
PointWavelet: Learning in Spectral Domain for 3-D Point Cloud Analysis
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种名为PointWavelet的新方法,通过在谱域中探索局部图来改进3D点云分析 引入可学习的图小波变换,避免耗时的谱分解,显著加速训练过程 NA 改进3D点云分类和分割的深度学习方法 3D点云数据 计算机视觉 NA 图小波变换 CNN 3D点云 四个流行的点云数据集:ModelNet40、ScanObjectNN、ShapeNet-Part和S3DIS
1386 2025-03-06
Scalable Moment Propagation and Analysis of Variational Distributions for Practical Bayesian Deep Learning
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种基于矩传播(MP)的快速可靠的贝叶斯深度学习方法,通过引入扩展的批量归一化层来训练深度学习模型,并探讨了不同变分分布的处理方法 提出了一种基于矩传播的贝叶斯深度学习方法,通过扩展的批量归一化层来训练深度学习模型,并研究了不同变分分布的处理方法 MP方法在深度模型中的适用性尚未充分探索,且设计良好校准的MP模型仍然具有挑战性 实现快速且可靠的贝叶斯深度学习方法,以处理预测不确定性 深度学习模型及其预测不确定性 机器学习 NA 矩传播(MP),变分推断(VI),蒙特卡罗采样(MC) 贝叶斯深度学习模型 NA NA
1387 2025-03-06
Learning Rates of Deep Nets for Geometrically Strongly Mixing Sequence
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文为深度神经网络在几何强混合序列下的快速学习率建立了理论基础 首次提出了基于混合序列的深度神经网络方法的收敛性结果,这是对独立样本情况的自然推广 现有研究假设样本独立,这一假设在许多现实场景中过于强烈 建立深度神经网络在依赖样本情况下的快速学习率理论基础 深度神经网络回归中的经验风险最小化 机器学习 NA NA 深度神经网络 (DNN) NA NA
1388 2025-03-06
On Model of Recurrent Neural Network on a Time Scale: Exponential Convergence and Stability Research
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文研究了在时间尺度上使用延迟微分方程建模的递归神经网络(RNN)的架构设计,重点探讨了系统的定性行为和稳定性 本文创新性地在时间尺度上结合多个离散和分布式延迟,探索了RNN模型的指数稳定性,并比较了Hilger和常规指数函数两种构建指数估计的方法 研究主要集中于理论分析和数值模拟,缺乏实际应用场景的验证 研究目的是在时间尺度上建模和探讨延迟RNN的架构设计及其稳定性 递归神经网络(RNN)及其在时间尺度上的动态行为 机器学习 NA 延迟微分方程 RNN 数值数据 两个模型:一个两神经元网络(含四个离散和分布式延迟)和一个七神经元环格延迟网络
1389 2025-03-06
Generalizable and Discriminative Representations for Adversarially Robust Few-Shot Learning
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种新的对抗性鲁棒少样本图像分类方法,通过引入对抗感知机制和对抗重加权训练策略,以及循环特征净化器,提高了模型在对抗性样本下的鲁棒性和泛化能力 提出了一种无需繁琐元任务采样的对抗性鲁棒少样本学习方法,引入了对抗感知机制、对抗重加权训练策略和循环特征净化器,显著提升了模型在对抗性样本下的鲁棒性和泛化能力 未提及具体的局限性 提高少样本图像分类任务在对抗性样本下的鲁棒性和泛化能力 少样本图像分类任务 计算机视觉 NA 对抗性训练 NA 图像 在三个标准基准数据集上进行了广泛实验
1390 2025-03-06
Statistical Machine Learning for Power Flow Analysis Considering the Influence of Weather Factors on Photovoltaic Power Generation
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种基于统计机器学习的随机天气生成器(SWG),用于分析考虑天气因素影响的光伏发电的电力潮流 结合生成对抗网络(GANs)、概率论和信息论,提出了一种新的深度学习模型,用于生成和评估全年每小时的模拟天气数据 未提及具体局限性 分析天气因素对光伏发电和天气敏感负荷的影响,以提高电力潮流分析的准确性 光伏发电和天气敏感负荷 机器学习 NA 统计机器学习(SML) 生成对抗网络(GANs) 天气数据 中国广东的一个实际配电网络,使用全年模拟数据进行电力潮流分析
1391 2025-03-06
Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns
2025-Mar, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种利用结构化三元模式(STePs)设计高效卷积神经网络(ConvNet)架构的方法,以减少训练和推理过程中的资源需求 通过使用从局部二值模式(LBPs)和Haar特征生成的非学习权重参数,减少了卷积神经网络的总权重更新,从而提高了效率 该方法需要进一步研究非学习权重的良好先验,以在不改变网络结构的情况下提高深度学习架构的效率 设计高效的卷积神经网络架构,以减少资源需求并提高在移动和嵌入式平台上的应用 卷积神经网络(ConvNets) 计算机视觉 NA 局部二值模式(LBPs)和Haar特征 卷积神经网络(ConvNets) 图像 四个图像分类数据集
1392 2025-03-06
IoT-Based Elderly Health Monitoring System Using Firebase Cloud Computing
2025-Mar, Health science reports IF:2.1Q3
研究论文 本研究开发并验证了一种基于物联网的老年人健康监测系统,旨在提高老年人的生活质量 系统集成了Firebase云平台和Android用户界面,实现了实时数据收集和分析,并采用监督机器学习技术进行健康状况预测 样本量较小,仅涉及六名参与者,未来可扩展样本量以验证系统的普适性 开发一种基于物联网的老年人健康监测系统,以应对日益增长的老年人口对医疗系统的挑战 老年人 物联网 老年疾病 监督机器学习 XGBoost 实时生理数据(心率、血氧饱和度、体温) 六名参与者
1393 2025-03-05
A spatiotemporal CNN-LSTM deep learning model for predicting soil temperature in diverse large-scale regional climates
2025-Mar-10, The Science of the total environment
研究论文 本研究开发了一种结合CNN和LSTM的深度学习模型,用于预测不同气候区域下的土壤温度 结合CNN和LSTM模型,首次用于预测大范围区域内的土壤温度,并在多种气候条件下验证了其准确性 研究仅针对加拿大和美国的五个气候区域,未涵盖全球其他气候类型 开发一种可靠的土壤温度预测模型,以支持农业、水文和气候适应等领域的决策 土壤温度 机器学习 NA 深度学习 CNN-LSTM 时间序列数据 加拿大和美国的五个气候区域的年度小时时间序列土壤温度数据
1394 2025-03-05
Hybrid ladybug Hawk optimization-enabled deep learning for multimodal Parkinson's disease classification using voice signals and hand-drawn images
2025-Mar-04, Network (Bristol, England)
研究论文 本研究开发了一种优化的深度学习模型,用于通过语音信号和手绘螺旋图像进行帕金森病分类 结合了ZFNet和DRN模型,并利用LHO算法进行训练,通过多数投票选择最佳输出 未提及模型在不同数据集上的泛化能力 开发一种用于帕金森病早期诊断的深度学习模型 帕金森病患者 深度学习 帕金森病 深度学习 ZFNet, DRN 语音信号, 手绘图像 未提及具体样本数量
1395 2025-03-05
New AI explained and validated deep learning approaches to accurately predict diabetes
2025-Mar-04, Medical & biological engineering & computing IF:2.6Q3
研究论文 本文提出了两种新的深度学习模型LeDNet和HiDenNet,用于早期和准确的糖尿病预测,并通过实验验证了其优越性能 提出了两种新的深度学习模型LeDNet和HiDenNet,结合了LeNet、Dual Attention Network、highway network和DenseNet的特点,并采用多数加权少数过采样技术解决了类别不平衡问题 模型在Diabetes Health Indicators数据集上训练,该数据集存在固有的类别不平衡问题,可能导致预测偏差 提高糖尿病预测的准确性和可解释性 糖尿病患者 机器学习 糖尿病 深度学习 LeDNet, HiDenNet 结构化数据 Diabetes Health Indicators数据集
1396 2025-03-05
Accelerated retinal ageing and multimorbidity in middle-aged and older adults
2025-Mar-04, GeroScience IF:5.3Q1
研究论文 本研究探讨了视网膜年龄差距与多病状态之间的关联 使用深度学习模型计算视网膜年龄差距,并首次将其与多病状态的发生风险相关联 研究依赖于基线数据,可能未完全捕捉到所有相关变量 研究视网膜年龄差距与多病状态之间的关联 45,436名中老年参与者 数字病理学 老年疾病 深度学习 深度学习模型 图像 45,436名参与者
1397 2025-03-05
Application of TransUnet Deep Learning Model for Automatic Segmentation of Cervical Cancer in Small-Field T2WI Images
2025-Mar-04, Journal of imaging informatics in medicine
研究论文 本研究开发了一种创新的深度学习模型,用于增强宫颈癌病变的自动分割 结合CNN和TransUnet模型,利用多方向MRI技术开发了三种不同的分割模型,显著提高了宫颈癌组织的分割精度 研究仅基于小视野T2WI图像,可能限制了模型的泛化能力 提高宫颈癌在MR图像中的自动分割精度,以辅助自动检测、分期和治疗规划 222名经病理确诊的宫颈癌患者的4063张T2WI小视野图像 计算机视觉 宫颈癌 MRI CNN, TransUnet 图像 222名患者的4063张T2WI图像
1398 2025-03-05
Recommendations for Artificial Intelligence Application in Continued Process Verification: A Journey Toward the Challenges and Benefits of AI in the Biopharmaceutical Industry
2025-Mar-03, PDA journal of pharmaceutical science and technology
review 本文探讨了人工智能(AI)在生物制药行业持续过程验证(CPV)中的变革性影响,并提供了实施AI的综合建议 提出了将AI与监管标准对齐的建议,并强调透明度、可解释性和风险管理,为AI在制药制造中的实施建立最佳实践 未涉及CPV of the Future项目中使用的具体算法,因为需要独立于算法进行通用化 研究AI在生物制药行业持续过程验证中的应用挑战与机遇 生物制药行业中的持续过程验证(CPV) machine learning NA AI, Machine Learning, Deep Learning NA real-time data NA
1399 2025-03-05
RESNET-50 with ontological visual features based medicinal plants classification
2025-Mar-03, Network (Bristol, England)
研究论文 本文提出了一种基于本体视觉特征和RESNET-50的药用植物分类方法 结合了本体关系、群体智能技术(粒子群和布谷鸟搜索算法)以及深度学习模型RESNET-50,提出了一个混合模型来提高分类准确性 未提及样本多样性和模型泛化能力的验证 提高药用植物叶片分类的准确性和效率 15种药用植物的叶片 计算机视觉 NA 粒子群算法、布谷鸟搜索算法、回归神经网络(GRNN)、RESNET-50 RESNET-50、GRNN 图像 15种药用植物的叶片数据集
1400 2025-03-05
Deep Learning-Based Diagnostic Model for Parkinson's Disease Using Handwritten Spiral and Wave Images
2025-Mar-03, Current medical science IF:2.0Q3
研究论文 本文开发并验证了一种基于深度神经网络的模型,用于通过手绘螺旋和波浪图像诊断帕金森病,并与多种机器学习和深度学习模型进行了性能比较 使用深度神经网络模型处理手绘螺旋和波浪图像,显著提高了帕金森病的诊断准确性,超越了多种传统机器学习和深度学习模型 数据集规模较小,仅包含204张图像,可能影响模型的泛化能力 开发一种基于深度神经网络的帕金森病诊断模型,并验证其性能 帕金森病患者和健康受试者的手绘螺旋和波浪图像 计算机视觉 帕金森病 深度神经网络 DNN 图像 204张图像(102张螺旋图像和102张波浪图像)
回到顶部