深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1511 篇文献,本页显示第 1421 - 1440 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1421 2025-03-03
Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data
2025-Mar, Stats IF:0.9Q3
研究论文 本文提出了一种基于f-散度的双向生成对抗网络tf-BiGAIN,用于高维时间序列数据中的缺失值填补 tf-BiGAIN引入了两个关键创新点:使用f-散度作为目标函数以增强模型的灵活性和适应性,以及使用双向门控循环单元以利用前后时间信息 NA 解决高维时间序列数据中缺失值填补的挑战 高维时间序列数据 机器学习 NA 生成对抗网络 tf-BiGAIN 时间序列数据 两个真实世界的时间序列数据集
1422 2025-03-02
Physics-driven deep learning for high-fidelity photon-detection ghost imaging
2025-Mar-01, Optics letters IF:3.1Q2
研究论文 本文提出了一种基于物理驱动的深度学习光子探测鬼成像方法,以提高在散射介质中的空间和深度分辨率 通过共同设计计算鬼成像系统和网络,将成像和重建更紧密地结合,以超越物理分辨率限制,并设计了具有注意力机制的特殊深度融合网络 NA 提高在散射介质中的光子探测成像的空间和深度分辨率 光子探测成像 计算机视觉 NA 深度学习 深度融合网络 图像 NA
1423 2025-03-02
Phantom-metasurface cooperative system trained by a deep learning network driven by a bound state for a magnetic resonance-enhanced system
2025-Mar-01, Optics letters IF:3.1Q2
研究论文 本研究开发了一种基于深度学习网络训练的高效体模超表面复合MRI增强系统,并在MHz频段实现了超表面的设计与控制 结合深度神经网络和电磁超表面,显著提高了超表面的设计效率,并在MRI系统中展示了巨大的应用潜力 NA 提高MRI成像速度和分辨率 MRI系统 医学影像 NA 深度学习网络 前向神经网络 电磁响应特性 NA
1424 2025-03-01
Decoding the effects of mutation on protein interactions using machine learning
2025-Mar, Biophysics reviews IF:2.9Q2
review 本文综述了利用机器学习预测突变对蛋白质相互作用影响的最新进展 综合评估了基于物理化学、机器学习和深度学习的预测方法,并探讨了未来发展方向 讨论了突变数据的局限性,包括偏差、数据质量和数据集大小 理解遗传变异如何影响蛋白质与其他生物分子之间的相互作用,以阐明疾病机制和开发靶向治疗 蛋白质相互作用及其突变效应 machine learning cancer machine learning, deep learning NA mutational data NA
1425 2025-02-28
Advanced deep learning techniques for recognition of dental implants
2025 Mar-Apr, Journal of oral biology and craniofacial research
研究论文 本研究评估了一种先进的深度学习技术DEtection TRanformer,用于识别牙科植入物 使用基于Transformer的深度学习技术DEtection TRanformer进行牙科植入物识别,这是一种新颖的应用 模型在未见过的验证数据上表现不佳,需要在准确性和效率之间进行优化 开发一种能够通过分析X光片图像来预测植入物类型的人工智能工具 牙科植入物 计算机视觉 NA 深度学习 DEtection TRanformer 图像 1138张图像,包含五种植入物类型,来自根尖和全景X光片
1426 2025-02-26
LiteMamba-Bound: A lightweight Mamba-based model with boundary-aware and normalized active contour loss for skin lesion segmentation
2025-Mar, Methods (San Diego, Calif.)
研究论文 本文提出了一种轻量级的基于Mamba的模型LiteMamba-Bound,用于皮肤病变分割,结合了边界感知和归一化主动轮廓损失 提出了Channel Attention Dual Mamba (CAD-Mamba)块和Reverse Attention Boundary Module,以及归一化主动轮廓损失函数,显著提升了模型性能 NA 提高皮肤病变分割的精度,特别是在医学图像中区分病变区域和健康皮肤 皮肤病变图像 计算机视觉 皮肤癌 深度学习 LiteMamba-Bound, CAD-Mamba, Reverse Attention Boundary Module 图像 两个皮肤图像数据集:ISIC2018和PH2
1427 2025-02-25
CATALYZE: a deep learning approach for cataract assessment and grading on SS-OCT images
2025-Mar-01, Journal of cataract and refractive surgery IF:2.6Q1
研究论文 本文提出了一种基于深度学习的方法CATALYZE,用于在SS-OCT图像上进行白内障评估和分级 开发了一种新的客观深度学习模型,用于基于SS-OCT扫描的白内障分级,并引入了临床显著性指数(CSI)作为评估指标 单中心研究,排除了有眼部手术史、角膜或视网膜疾病以及眼干燥症的患者 评估一种新的客观深度学习模型在白内障分级中的应用 白内障患者和对照组的眼睛 计算机视觉 白内障 SS-OCT扫描 深度学习模型 图像 548只眼睛(315名患者,年龄19至85岁)
1428 2025-02-25
Opportunistic assessment of steatotic liver disease in lung cancer screening eligible individuals
2025-Mar, Journal of internal medicine IF:9.0Q1
研究论文 本研究利用深度学习模型在肺癌筛查的胸部CT中评估脂肪肝病(SLD),并探讨其在重度吸烟者中的预后价值 首次在肺癌筛查的胸部CT中利用深度学习模型评估SLD,并发现SLD是重度吸烟者长期死亡率的独立预测因子 研究仅基于NLST参与者的数据,可能无法推广到其他人群 评估SLD在肺癌筛查中的预后价值 19,774名NLST参与者 数字病理 肺癌 深度学习 深度学习模型 CT图像 19,774名NLST参与者
1429 2025-02-24
Dynamic cycles between brain states during creative storytelling
2025-Mar, NeuroImage IF:4.7Q1
研究论文 本文通过功能性磁共振成像(fMRI)研究,探讨了创造性思维过程中不同脑状态之间的动态转换 通过fMRI和深度学习方法,揭示了创造性思维过程中自发思维和刻意思维之间的交替互动,以及不同脑状态之间的转换模式 样本量较小,仅包括41名大学生,可能限制了结果的普遍性 探讨创造性思维过程中不同脑状态之间的动态转换及其认知和神经机制 41名大学生 神经科学 NA 功能性磁共振成像(fMRI) 深度学习 脑成像数据 41名大学生
1430 2025-02-24
Beyond averaging: A transformer approach to decoding event related brain potentials
2025-Mar, NeuroImage IF:4.7Q1
研究论文 本研究评估了基于Transformer的深度学习方法在处理事件相关脑电位(ERPs)方面的潜力,与传统平均方法相比,该方法能提供更深入的神经信号分析 使用Transformer网络中的注意力机制,生成注意力图,揭示了传统平均方法未能发现的相关电位时间窗口 研究样本量较小,仅包含29名正常听力参与者,且实验设计局限于声音感知的特定情境 评估Transformer方法在分析事件相关脑电位(ERPs)中的应用效果 29名18至30岁正常听力参与者的脑电图(EEG)数据 机器学习 NA 脑电图(EEG) 卷积Transformer 脑电图(EEG)信号 29名正常听力参与者
1431 2025-02-24
Research of orthodontic soft tissue profile prediction based on conditional generative adversarial networks
2025-Mar, Journal of dentistry IF:4.8Q1
研究论文 本研究构建了一种新的条件生成对抗网络(CGAN)模型,用于预测正畸治疗后的侧面外观变化 提出了一种新的深度学习模型soft-P-CGAN,结合了条件向量输入模块、基于U-Net的生成器模块和基于PatchGAN的判别器模块,设计了软损失以增强软组织轮廓的生成,并通过多尺度特征金字塔提高图像质量 下颌区域的预测相对不准确 预测正畸治疗后的侧面外观变化 成人患者的侧位头颅X光片 计算机视觉 NA 条件生成对抗网络(CGAN) soft-P-CGAN 图像 NA
1432 2025-02-24
Automated diagnosis and classification of temporomandibular joint degenerative disease via artificial intelligence using CBCT imaging
2025-Mar, Journal of dentistry IF:4.8Q1
研究论文 本研究利用人工智能技术,通过CBCT影像实现颞下颌关节退行性疾病的自动诊断和分类 使用YOLOv10算法构建的AI模型能够检测颞下颌关节退行性疾病,并区分其典型的影像学特征,如侵蚀、骨赘、硬化和软骨下囊肿 模型在检测具有多个退行性疾病特征的影像时,准确率有所下降 实现颞下颌关节退行性疾病的自动诊断和分类 1018名患者的7357张CBCT影像 计算机视觉 颞下颌关节退行性疾病 CBCT成像 YOLOv10 影像 7357张CBCT影像(来自1018名患者)
1433 2025-02-23
Performance and efficiency of machine learning models in analyzing capillary serum protein electrophoresis
2025-Mar-01, Clinica chimica acta; international journal of clinical chemistry
研究论文 本文研究了机器学习模型在分析毛细血管血清蛋白电泳(SPEP)中的性能和效率,旨在通过人工智能模型提高M蛋白的分类和定位准确性 本文创新性地将U-Net与Transformer模型结合,用于M蛋白的分类和定位,展示了与临床专家相当的性能 研究依赖于单一数据集,且未探讨模型在其他类型疾病中的应用 开发人工智能诊断模型,以提高SPEP在M蛋白相关疾病诊断中的准确性和效率 毛细血管血清蛋白电泳(SPEP)数据 机器学习 M蛋白相关疾病 血清蛋白电泳(SPEP) XGB, U-Net, Transformer 电泳数据 85,026个SPEP结果用于训练和验证,1,079个样本用于测试
1434 2025-02-22
MicroRNA signature for early prediction of knee osteoarthritis structural progression using integrated machine and deep learning approaches
2025-Mar, Osteoarthritis and cartilage IF:7.2Q1
研究论文 本研究旨在开发一种基于miRNA的预后模型,用于识别膝关节骨关节炎(OA)结构进展者/非进展者,采用集成机器学习和深度学习工具 引入了一种新的miRNA预后模型,用于预测膝关节OA结构进展,结合了机器学习和深度学习技术 模型验证样本量较小(30个样本),可能需要更大规模的研究来进一步验证其泛化能力 开发一种基于miRNA的预后模型,用于预测膝关节OA的结构进展 膝关节OA患者 机器学习 骨关节炎 miRNA测序 人工神经网络(ANN) 血清miRNA数据、磁共振成像(MRI)和X射线数据 152名OAI参与者(91名进展者,61名非进展者)用于模型开发,30名独立参与者(14名进展者,16名非进展者)用于模型验证
1435 2025-02-21
ViroNia: LSTM based proteomics model for precise prediction of HCV
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文介绍了ViroNia,一种基于LSTM的蛋白质组学模型,用于高精度预测HCV病毒蛋白分类 ViroNia利用LSTM架构进行病毒蛋白分类,展示了其在分类任务中的高效性,并优于其他深度学习架构如Simple RNN、GRU、1d CNN和双向LSTM 尽管ViroNia在分类任务中表现出色,但其在更广泛数据集上的泛化能力尚未验证 开发高精度的病毒蛋白分类模型,以支持病毒研究和干预设计 HCV病毒蛋白 自然语言处理 NA LSTM LSTM 蛋白质序列 2250个蛋白质序列
1436 2025-02-21
Improved early detection accuracy for breast cancer using a deep learning framework in medical imaging
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种新的深度学习框架,用于提高乳腺癌早期检测的准确性 结合卷积神经网络(CNN)与特征选择和融合方法,自动从图像中学习并找到相关特征,从而超越现有方法 未提及具体的数据集大小或多样性限制 提高乳腺癌早期检测的准确性 乳腺癌的医学影像 计算机视觉 乳腺癌 深度学习 CNN 图像 NA
1437 2025-02-21
Deep learning image registration for cardiac motion estimation in adult and fetal echocardiography via a focus on anatomic plausibility and texture quality of warped image
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文提出了一种深度学习图像配准方法,用于成人和胎儿超声心动图中的心脏运动估计,重点关注变形图像的解剖合理性和纹理质量 提出了一种新的深度学习图像配准框架,通过引入解剖形状编码约束和数据驱动的纹理约束,提高了变形图像的解剖合理性和纹理质量 尽管方法在成人和胎儿超声心动图中表现出色,但未提及在其他类型医学图像上的适用性 提高超声心动图中心脏运动估计的准确性和一致性 成人和胎儿超声心动图 计算机视觉 心血管疾病 深度学习图像配准(DLIR) 深度学习模型 图像 多人口胎儿数据集和公共CAMUS成人数据集
1438 2025-02-21
A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities
2025-Mar, Computers in biology and medicine IF:7.0Q1
研究论文 本文比较了统计、放射组学和深度学习特征提取技术在医学图像分类中的应用效果 通过对比不同特征提取技术在多种医学影像模态下的表现,揭示了深度学习技术在准确性和速度上的优势 研究仅针对二分类问题,未涉及多分类或更复杂的医学图像分析任务 评估不同特征提取技术对医学图像分类模型性能的影响 H&E染色图像、胸部X光片和视网膜OCT图像 计算机视觉 NA 统计特征提取、放射组学特征提取、深度学习特征提取 PCA-LDA, ResNet50, DenseNet121 图像 NA
1439 2025-02-20
A deep learning method for total-body dynamic PET imaging with dual-time-window protocols
2025-Mar, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 本文开发了一种深度学习算法,能够从双时间窗协议预测动态图像,从而缩短动态正电子发射断层扫描(PET)的扫描时间 提出了一种双向序列到序列模型(Bi-AT-Seq2Seq),并引入注意力机制,显著优于单向或无注意力机制的模型 研究样本量相对较小,且仅限于肺结节和乳腺结节患者 缩短动态PET扫描时间,提高临床应用的可行性 70名肺结节或乳腺结节患者 医学影像分析 肺结节, 乳腺结节 动态PET/CT扫描 Bi-AT-Seq2Seq 医学影像 70名患者(32名男性,平均年龄53.61±13.53岁)
1440 2025-02-20
Deep learning-based intratumoral and peritumoral features for differentiating ocular adnexal lymphoma and idiopathic orbital inflammation
2025-Mar, European radiology IF:4.7Q1
研究论文 本文评估了基于深度学习的肿瘤内和肿瘤周围特征在区分眼附属器淋巴瘤(OAL)和特发性眼眶炎症(IOI)中的价值 使用基于注意力的融合模型融合了肿瘤内和肿瘤周围区域以及多个MR序列提取的特征,显著提高了诊断性能 研究中未发现肿瘤周围特征与肿瘤内特征在性能上有显著差异 评估深度学习在区分OAL和IOI中的应用价值 97名经病理学确认的OAL和IOI患者 数字病理学 眼附属器淋巴瘤, 特发性眼眶炎症 深度学习 基于注意力的融合模型 MR图像 97名患者(43名OAL,54名IOI)
回到顶部