本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1441 | 2025-02-21 |
A comparative study of statistical, radiomics, and deep learning feature extraction techniques for medical image classification in optical and radiological modalities
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109768
PMID:39891957
|
研究论文 | 本文比较了统计、放射组学和深度学习特征提取技术在医学图像分类中的应用效果 | 通过对比不同特征提取技术在多种医学影像模态下的表现,揭示了深度学习技术在准确性和速度上的优势 | 研究仅针对二分类问题,未涉及多分类或更复杂的医学图像分析任务 | 评估不同特征提取技术对医学图像分类模型性能的影响 | H&E染色图像、胸部X光片和视网膜OCT图像 | 计算机视觉 | NA | 统计特征提取、放射组学特征提取、深度学习特征提取 | PCA-LDA, ResNet50, DenseNet121 | 图像 | NA |
1442 | 2025-02-20 |
A deep learning method for total-body dynamic PET imaging with dual-time-window protocols
2025-Mar, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-024-07012-1
PMID:39688700
|
研究论文 | 本文开发了一种深度学习算法,能够从双时间窗协议预测动态图像,从而缩短动态正电子发射断层扫描(PET)的扫描时间 | 提出了一种双向序列到序列模型(Bi-AT-Seq2Seq),并引入注意力机制,显著优于单向或无注意力机制的模型 | 研究样本量相对较小,且仅限于肺结节和乳腺结节患者 | 缩短动态PET扫描时间,提高临床应用的可行性 | 70名肺结节或乳腺结节患者 | 医学影像分析 | 肺结节, 乳腺结节 | 动态PET/CT扫描 | Bi-AT-Seq2Seq | 医学影像 | 70名患者(32名男性,平均年龄53.61±13.53岁) |
1443 | 2025-02-20 |
Deep learning-based intratumoral and peritumoral features for differentiating ocular adnexal lymphoma and idiopathic orbital inflammation
2025-Mar, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11275-5
PMID:39702637
|
研究论文 | 本文评估了基于深度学习的肿瘤内和肿瘤周围特征在区分眼附属器淋巴瘤(OAL)和特发性眼眶炎症(IOI)中的价值 | 使用基于注意力的融合模型融合了肿瘤内和肿瘤周围区域以及多个MR序列提取的特征,显著提高了诊断性能 | 研究中未发现肿瘤周围特征与肿瘤内特征在性能上有显著差异 | 评估深度学习在区分OAL和IOI中的应用价值 | 97名经病理学确认的OAL和IOI患者 | 数字病理学 | 眼附属器淋巴瘤, 特发性眼眶炎症 | 深度学习 | 基于注意力的融合模型 | MR图像 | 97名患者(43名OAL,54名IOI) |
1444 | 2025-02-20 |
Identifying influential nodes in brain networks via self-supervised graph-transformer
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2024.109629
PMID:39731922
|
研究论文 | 本文提出了一种基于图变换器的自监督图重建框架(SSGR-GT),用于识别脑网络中的关键节点 | 采用自监督深度学习模型,无需手动特征提取,直接从数据中学习有意义的表示,结合图变换器提取脑图的局部和全局特征,并通过图融合技术结合功能和结构信息进行多模态分析 | 依赖于自监督学习的效果,可能受限于数据质量和模型训练过程 | 识别脑网络中的关键节点(I-nodes),以增强对脑工作机制的理解 | 脑网络中的关键节点 | 脑成像 | NA | 自监督深度学习,图变换器 | Graph-Transformer | 脑图数据 | 56个关键节点 |
1445 | 2025-02-20 |
Enhanced brain tumor detection and segmentation using densely connected convolutional networks with stacking ensemble learning
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109703
PMID:39862469
|
研究论文 | 本研究旨在通过实施先进的堆叠集成学习(SEL)方法,提高脑肿瘤(BT)检测和分割的准确性和分类效果 | 提出了一种名为SEL-DenseNet201的堆叠DenseNet201作为元模型,结合了六种不同的基础模型,以增强脑肿瘤MRI图像的分割性能 | 研究中未提及样本的具体数量,且未讨论模型在实际临床环境中的适用性和泛化能力 | 提高脑肿瘤检测和分割的准确性,以支持早期诊断和治疗规划 | 脑肿瘤的MRI图像 | 计算机视觉 | 脑肿瘤 | MRI图像分析 | DenseNet201, MobileNet-v3, 3D-CNN, VGG-16, VGG-19, ResNet50, AlexNet | 图像 | NA |
1446 | 2025-02-20 |
NetSDR: Drug repurposing for cancers based on subtype-specific network modularization and perturbation analysis
2025-Mar, Biochimica et biophysica acta. Molecular basis of disease
DOI:10.1016/j.bbadis.2025.167688
PMID:39862994
|
研究论文 | 本文提出了NetSDR,一种基于网络的亚型特异性药物重定位框架,用于优先考虑特定癌症亚型的重定位药物 | NetSDR框架通过整合癌症亚型信息和网络扰动分析,结合深度学习构建加权药物响应网络,提出了一种新的药物重定位方法 | NA | 开发一种基于网络的亚型特异性药物重定位框架,以优先考虑特定癌症亚型的重定位药物 | 癌症亚型 | 系统生物学 | 癌症 | 网络医学方法、深度学习 | 深度学习 | 蛋白质组学数据 | NA |
1447 | 2025-02-20 |
A robust and generalized framework in diabetes classification across heterogeneous environments
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109720
PMID:39864329
|
研究论文 | 本研究提出了一种鲁棒的机器学习框架,用于在不同人群中预测糖尿病,使用PIMA和BD两个不同的数据集进行验证 | 提出了一个跨异构环境的糖尿病分类框架,通过数据集内、数据集间和部分融合数据集验证技术,全面评估模型的泛化能力和性能 | 模型在跨数据集验证时性能下降,尤其是在BD数据集上训练并在PIMA数据集上测试时,准确率仅为74% | 开发一个鲁棒的机器学习框架,以提高糖尿病预测在不同人群中的泛化能力和准确性 | 女性人群中的糖尿病预测 | 机器学习 | 糖尿病 | 机器学习 | XGBoost, Random Forest, Gradient Boosting, 深度学习模型 | 结构化数据 | PIMA和BD两个数据集 |
1448 | 2025-02-20 |
Enhancing cardiovascular disease classification in ECG spectrograms by using multi-branch CNN
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109737
PMID:39864336
|
研究论文 | 本文提出并比较了一维(1D)、二维(2D)卷积神经网络(CNN)和多分支卷积神经网络(MB-CNN)在从一维(1D)心电图(ECG)记录的频谱图中分类各种心血管疾病(CVD)的性能 | 提出了一种多分支卷积神经网络(MB-CNN),能够捕捉不同层次的抽象特征,从而提高了心血管疾病的分类精度 | NA | 提高从心电图频谱图中分类心血管疾病的准确性 | 心血管疾病(包括扩张型心肌病、肥厚型心肌病、心肌梗死和冠状动脉疾病) | 计算机视觉 | 心血管疾病 | 连续小波变换(CWT) | 1D CNN, 2D CNN, MB-CNN | 图像(ECG频谱图) | MIT-BIH数据库中的5类ECG记录 |
1449 | 2025-02-20 |
OCDet: A comprehensive ovarian cell detection model with channel attention on immunohistochemical and morphological pathology images
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109713
PMID:39864335
|
研究论文 | 本文提出了一种名为OCDet的卵巢细胞检测模型,该模型结合了通道注意力机制,能够在免疫组化和形态学病理图像上全面检测多种卵巢癌细胞 | OCDet模型首次结合了通道注意力机制,能够高效提取病理特征,并在多种卵巢癌细胞的检测上表现出色 | 虽然OCDet在卵巢癌细胞检测上表现出色,但其在其他癌症类型上的应用潜力尚未完全验证 | 开发一种高效的深度学习框架,用于卵巢癌病理诊断中的多种细胞检测 | 卵巢癌相关的多种细胞,包括CD3、CD8、CD20阳性淋巴细胞、中性粒细胞和多倍体巨癌细胞 | 数字病理 | 卵巢癌 | 深度学习 | CSPDarkNet结合Efficient Channel Attention模块 | 图像 | 未明确提及具体样本数量 |
1450 | 2025-02-20 |
A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109704
PMID:39869986
|
研究论文 | 本文提出了一种基于深度学习和注意力机制的计算机辅助检测框架,用于有效检测和分类疟疾寄生虫的所有感染阶段,并支持多物种识别 | 该研究扩展了YOLO-SPAM和YOLO-PAM模型,结合注意力机制,提高了疟疾寄生虫检测的准确性和诊断实用性 | NA | 开发一种自动化疟疾检测解决方案,以支持病理学家并增强现实世界中的诊断实践 | 疟疾寄生虫 | 计算机视觉 | 疟疾 | 深度学习 | YOLO-SPAM, YOLO-PAM | 图像 | 三个公开可用的数据集 |
1451 | 2025-02-20 |
Detecting IDH and TERTp mutations in diffuse gliomas using 1H-MRS with attention deep-shallow networks
2025-Mar, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.109736
PMID:39874812
|
研究论文 | 本研究开发了深度学习分类器,利用质子磁共振波谱(1H-MRS)和一维卷积神经网络(1D-CNN)架构来识别胶质瘤中的IDH和TERTp突变 | 使用注意力机制的深浅网络(ADSN)进行突变检测,并利用Grad-CAM技术解释模型的决策过程 | 样本量相对较小,仅包括225名患者 | 开发非侵入性方法,用于术前检测胶质瘤中的IDH和TERTp突变,以帮助预后和治疗计划 | 225名成人半球弥漫性胶质瘤患者的1H-MRS数据 | 数字病理学 | 胶质瘤 | 1H-MRS, 深度学习 | 1D-CNN, 注意力深浅网络(ADSN) | 光谱数据 | 225名患者(117名IDH突变,108名IDH野生型;99名TERTp突变,100名TERTp野生型) |
1452 | 2025-02-19 |
Prediction of Visual Acuity After Cataract Surgery by Deep Learning Methods Using Clinical Information and Color Fundus Photography
2025-Mar, Current eye research
IF:1.7Q3
DOI:10.1080/02713683.2024.2430212
PMID:39651583
|
研究论文 | 本研究探讨了使用术前临床信息和彩色眼底摄影(CFP)通过深度学习方法预测白内障手术后视力的性能 | 结合了彩色眼底摄影和临床信息的多模态模型,用于预测白内障手术后的视力 | 多模态输入对预测性能的改善效果不明显,未来研究需要进一步明确多模态输入的影响 | 预测白内障手术后的视力 | 接受白内障手术的患者 | 计算机视觉 | 白内障 | 深度学习 | Xception和下游神经网络 | 图像和临床数据 | 446名患者的673张眼底图像 |
1453 | 2025-02-19 |
DeepPD: A Deep Learning Method for Predicting Peptide Detectability Based on Multi-feature Representation and Information Bottleneck
2025-Mar, Interdisciplinary sciences, computational life sciences
DOI:10.1007/s12539-024-00665-4
PMID:39661307
|
研究论文 | 本文介绍了一种名为DeepPD的深度学习框架,用于基于多特征表示和信息瓶颈原则预测肽的可检测性 | DeepPD结合了多特征表示和信息瓶颈原则,通过进化尺度建模2(ESM-2)提取肽的语义信息,并整合序列和进化信息构建特征空间,有效减少了特征空间的冗余 | NA | 预测肽的可检测性,以改进蛋白质组学中的基本任务 | 肽 | 机器学习 | NA | 进化尺度建模2(ESM-2) | 深度学习 | 序列数据 | 多个数据集 |
1454 | 2025-02-17 |
A deep-learning system integrating electrocardiograms and laboratory indicators for diagnosing acute aortic dissection and acute myocardial infarction
2025-Mar-15, International journal of cardiology
IF:3.2Q2
DOI:10.1016/j.ijcard.2025.133008
PMID:39880045
|
研究论文 | 本研究开发了一种多模态深度学习模型,整合心电图(ECG)信号和实验室指标,以提高急性A型主动脉夹层(AAD-type A)和急性心肌梗死(AMI)的诊断准确性 | 通过融合ECG特征和实验室指标,利用深度学习模型提高诊断准确性,为心血管疾病的快速诊断提供了新工具 | 研究样本量相对较小,且仅在单一医院进行,可能影响模型的泛化能力 | 提高急性A型主动脉夹层和急性心肌梗死的诊断准确性 | 急性A型主动脉夹层(AAD-type A)和急性心肌梗死(AMI)患者 | 机器学习 | 心血管疾病 | 深度学习 | ResNet-34, RandomForest, XGBoost, LightGBM | ECG信号和实验室指标 | 训练和验证集:136例AAD-type A和141例AMI患者;前瞻性测试集:30例AMI和32例AAD-type A患者 |
1455 | 2025-02-17 |
Biomechanics-Function in Glaucoma: Improved Visual Field Predictions from IOP-Induced Neural Strains
2025-Mar, American journal of ophthalmology
IF:4.1Q1
DOI:10.1016/j.ajo.2024.11.019
PMID:39631645
|
研究论文 | 本研究评估了神经组织结构和生物力学在青光眼功能损失预测中的作用,并探讨了生物力学在此类预测中的重要性 | 结合生物力学(眼压诱导的神经组织应变)和结构信息(组织形态和神经组织厚度)显著提高了视觉场损失预测的准确性 | 研究样本仅限于中国族群,且年龄超过50岁,可能限制了结果的普遍性 | 评估神经组织结构和生物力学在青光眼功能损失预测中的作用 | 238名青光眼患者 | 数字病理学 | 青光眼 | 光谱域OCT成像、数字体积相关分析 | Point-Net | 图像 | 238名青光眼患者 |
1456 | 2025-02-13 |
Active learning for extracting rare adverse events from electronic health records: A study in pediatric cardiology
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105761
PMID:39689449
|
研究论文 | 本文研究了如何从电子健康记录中自动化提取罕见的不良事件,特别是在儿科心脏病学领域 | 使用主动学习过程来注释数据,并训练深度学习文本分类器以准确识别经历过严重不良事件的患者 | 由于不良事件的罕见性,初始预筛选步骤获得的数据集不平衡,包含大量假阳性 | 自动化从电子病历文本中提取与心脏导管插入术相关的不良事件 | 因心脏导管插入术住院的患者的电子健康记录 | 自然语言处理 | 心血管疾病 | 主动学习,深度学习 | 深度学习文本分类器 | 文本 | 2,980名患者 |
1457 | 2025-02-13 |
Deep Imbalanced Regression Model for Predicting Refractive Error from Retinal Photos
2025 Mar-Apr, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2024.100659
PMID:39931359
|
研究论文 | 本研究旨在通过整合深度不平衡回归(DIR)技术到ResNet和Vision Transformer模型中,从视网膜照片预测屈光不正 | 首次将深度不平衡回归(DIR)技术整合到ResNet和Vision Transformer模型中,以解决数据集不平衡问题,并进行了外部验证 | 研究为回顾性研究,可能存在选择偏差 | 预测屈光不正 | 视网膜照片 | 计算机视觉 | 眼科疾病 | 深度不平衡回归(DIR) | ResNet34, SwinV2 (Swin Transformer) | 图像 | 总计124,514张视网膜图像(新加坡眼病流行病学研究、英国生物银行、新加坡前瞻性研究和北京眼研究) |
1458 | 2025-02-12 |
An AI-assisted explainable mTMCNN architecture for detection of mandibular third molar presence from panoramic radiography
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105724
PMID:39626596
|
研究论文 | 本研究设计并系统评估了一种名为可解释下颌第三磨牙卷积神经网络(E-mTMCNN)的架构,用于在全景X光片中检测下颌第三磨牙(m-M3)的存在 | 提出了E-mTMCNN架构,结合了GoogLeNet架构和LIME解释方法,提高了检测准确性和模型决策的透明度 | 未提及具体局限性 | 提高下颌第三磨牙的早期检测准确性,改善牙科临床决策和治疗计划 | 下颌第三磨牙在全景X光片中的存在 | 计算机视觉 | 牙科疾病 | 深度学习(DL)、卷积神经网络(CNN)、迁移学习(TL) | CNN(GoogLeNet) | 图像 | 未提及具体样本数量,使用了UESB数据集中的全景X光片 |
1459 | 2025-02-12 |
Universal representations in cardiovascular ECG assessment: A self-supervised learning approach
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105742
PMID:39631267
|
研究论文 | 本研究开发并验证了一种自监督学习方法,用于从纵向收集的心电图数据中生成通用的心电图表示,适用于多种心血管评估 | 采用对比自监督学习方法从大规模未标记的心电图数据中学习有意义的表示,并将其应用于下游任务,特别是在小样本情况下显著提升了分类模型的性能 | 研究主要依赖于单一医疗机构的内部数据集,虽然也使用了外部公共数据集进行验证,但可能仍存在泛化性问题 | 开发一种自监督学习方法,用于生成通用的心电图表示,以提升心血管疾病评估的准确性和鲁棒性 | 1,684,298名成年患者的心电图数据 | 机器学习 | 心血管疾病 | 对比自监督学习 | 预训练模型 | 心电图数据 | 4,932,573条心电图数据,来自1,684,298名成年患者 |
1460 | 2025-02-12 |
Multi-horizon event detection for in-hospital clinical deterioration using dual-channel graph attention network
2025-Mar, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2024.105745
PMID:39657403
|
研究论文 | 本文提出了一种端到端的深度学习架构,用于早期检测医院内的临床恶化事件 | 提出了双通道图注意力网络,结合多任务学习策略,能够显式学习多变量时间序列在特征和时间域上的相关性 | 实验仅在ICU收集的两个临床时间序列数据集上进行,可能限制了模型的泛化能力 | 实现医院内临床恶化事件的早期检测 | 医院内的临床恶化事件 | 机器学习 | NA | 深度学习 | 双通道图注意力网络 | 多变量时间序列 | 两个ICU收集的临床时间序列数据集 |