深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202503-202503] [清除筛选条件]
当前共找到 1539 篇文献,本页显示第 1521 - 1539 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1521 2025-01-25
A cognitive digital twin approach to improving driver compliance and accident prevention
2025-Mar, Accident; analysis and prevention
研究论文 本文介绍了一种基于认知数字孪生的驾驶辅助系统(CDAS),通过个性化驾驶决策模型动态更新,以适应不同驾驶员的控制与观察行为,从而提高驾驶安全性和用户接受度 提出了一种新型的认知数字孪生驾驶辅助系统(CDAS),通过个性化驾驶决策模型动态更新,结合驾驶员的观察行为,显著提升了驾驶辅助的个性化和适应性 需要大量标注数据集来支持数据驱动方法,可能在实际应用中面临数据获取和处理的挑战 提高驾驶安全性和驾驶员对辅助系统的接受度 驾驶员及其驾驶行为 机器学习 NA 认知数字孪生技术 个性化驾驶决策模型 驾驶行为数据 通过两次综合实验验证
1522 2025-01-24
Feasibility verification of deep-learning based collimator-less imaging system using a voxelated GAGG(Ce) single volume detector: A Monte Carlo simulation
2025-Mar, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine IF:1.6Q3
研究论文 本文设计了一种基于深度学习的无准直器成像系统,并通过蒙特卡罗模拟验证了其可行性 提出了一种基于深度学习的无准直器成像系统,利用体素化GAGG(Ce)单体积探测器和蒙特卡罗方法进行模拟,展示了系统的可行性 研究仅基于模拟数据,未进行实际实验验证 验证基于深度学习的无准直器成像系统的可行性 体素化GAGG(Ce)单体积探测器和Co、Ba、Na、Cs点源 计算机视觉 NA 蒙特卡罗模拟 全卷积网络 模拟数据 2000个位置的Co、Ba、Na、Cs点源
1523 2025-01-22
An object detection-based model for automated screening of stem-cells senescence during drug screening
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种基于Faster R-CNN的深度学习模型STGF R-CNN,用于自动检测干细胞衰老,以支持药物筛选 结合Swin Transformer和组归一化技术,提出了STGF R-CNN模型,显著提高了衰老细胞检测的准确性和效率 模型虽然轻量化,但参数量和计算量仍较高,可能限制其在资源受限环境中的应用 开发一种高效的自动化方法,用于干细胞衰老的定量评估,以支持抗衰老药物筛选 诱导多能干细胞衍生的间充质干细胞(iP-MSCs) 计算机视觉 NA 深度学习 Faster R-CNN, Swin Transformer 图像 iP-MSCs数据集
1524 2025-01-22
Cognitive process and information processing model based on deep learning algorithms
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文基于深度学习算法,提出了一个认知过程和信息处理模型,并通过一个仅具有视觉和组合检测能力的昆虫类生物的进化过程来阐述该模型 将婴儿认知能力的发展过程与深度学习模型相结合,提出了一个新颖的认知过程和信息处理模型,并通过具体实例展示了该模型的应用 模型的应用实例较为简单,未涉及复杂场景或多样化的认知任务 研究认知过程和信息处理模型,探索深度学习算法在认知科学中的应用 婴儿认知能力的发展过程,以及仅具有视觉和组合检测能力的昆虫类生物的进化过程 机器学习 NA 深度学习算法 深度学习模型 NA NA
1525 2025-01-22
Improved fractional-order gradient descent method based on multilayer perceptron
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种基于多层感知器(MLP)的改进分数阶梯度下降(IFOGD)方法,旨在增强分数阶梯度下降在深度学习中的应用 提出了一种改进的分数阶梯度下降方法,首次将分数阶微分应用于隐藏层,并解决了反向传播方向错误的问题,同时提出了基于PyTorch的分数阶Autograd(FOAutograd) 未明确提及实验样本的具体规模和多样性,可能限制了结果的普适性 改进分数阶梯度下降方法,以增强其在深度学习中的灵活性和应用范围 多层感知器(MLP)和人工神经网络(ANN) 机器学习 NA 分数阶梯度下降(FOGD)、Autograd 多层感知器(MLP) 模拟数据和时序数据 未明确提及具体样本规模
1526 2025-01-22
Data-dependent stability analysis of adversarial training
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文通过提供包含数据分布信息的随机梯度下降对抗训练泛化界限,填补了之前对抗训练泛化界限未包含数据分布信息的空白 首次在对抗训练的泛化界限中引入数据分布信息,并利用平均稳定性和高阶近似Lipschitz条件分析数据分布和对抗预算变化对鲁棒泛化差距的影响 NA 研究对抗训练的泛化能力,特别是数据分布信息对泛化界限的影响 随机梯度下降对抗训练算法 机器学习 NA NA NA NA NA
1527 2025-01-22
An extrapolation-driven network architecture for physics-informed deep learning
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种基于外推驱动的网络架构,用于物理信息深度学习,以解决当前物理信息神经网络(PINN)在时间依赖偏微分方程(PDE)求解中的一些弱点 通过设计具有特殊特性的外推控制函数并结合校正项,构建了一种新的神经网络架构,该架构的网络参数与时间变量耦合,称为外推驱动网络架构 虽然本文提出的方法在数值实验中表现良好,但其在大规模实际应用中的有效性和稳定性仍需进一步验证 改进物理信息神经网络(PINN)在时间依赖偏微分方程(PDE)求解中的性能 时间依赖偏微分方程(PDE) 机器学习 NA 物理信息神经网络(PINN) 外推驱动网络架构 数值数据 NA
1528 2025-01-22
M4Net: Multi-level multi-patch multi-receptive multi-dimensional attention network for infrared small target detection
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为M4Net的多层次多补丁多感受野多维度注意力网络,用于红外小目标检测 设计了多层次多补丁多感受野多维度注意力网络(M4Net),通过多层次特征提取模块(MFEM)、多补丁注意力模块(MPAM)、多感受野模块(MRFM)和多维度交互模块(MDIM)来增强网络的学习能力,解决了传统方法依赖手动特征设置和深度学习在深层丢失目标的问题 未提及具体的数据集大小和实验环境限制 提高红外小目标检测的准确性和鲁棒性 红外小目标 计算机视觉 NA 深度学习 多层次多补丁多感受野多维度注意力网络(M4Net) 红外图像 未提及具体样本数量
1529 2025-01-22
Explainable exercise recommendation with knowledge graph
2025-Mar, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种基于知识图谱的可解释性练习推荐系统KG4EER,旨在提高学生的学习效率 KG4EER通过构建包含知识概念、学生和练习三个主要实体及其相互关系知识图谱,实现了练习的个性化推荐,并提供了推荐解释 未明确提及具体局限性 解决现有推荐系统在推荐合适练习和提供解释方面的不足 学生和练习资源 自然语言处理 NA 知识图谱构建 KG4EER 文本 三个真实世界的数据集
1530 2025-01-16
Automated Detection of Filamentous Fungal Keratitis on Whole Slide Images of Potassium Hydroxide Smears with Multiple Instance Learning
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本研究评估了深度学习框架双流多实例学习(DSMIL)在自动化分析氢氧化钾(KOH)涂片全片成像(WSI)中的有效性,以快速准确检测真菌感染 使用双流多实例学习(DSMIL)处理高分辨率WSI数据,自动检测真菌感染,并通过热图提供视觉解释 研究为回顾性观察研究,可能受限于样本选择和人类专家解释的一致性 自动化分析KOH涂片WSI,以快速准确检测真菌感染 568名疑似真菌性角膜炎患者的角膜刮片 数字病理学 真菌性角膜炎 双流多实例学习(DSMIL) DSMIL 图像 568名患者的角膜刮片
1531 2025-01-16
Frontal plane mechanical leg alignment estimation from knee x-rays using deep learning
2025-Mar, Osteoarthritis and cartilage open
研究论文 本研究开发并验证了一种深度学习模型,用于从膝关节前后位(AP)/后前位(PA)X光片中分类腿部对齐为“正常”或“错位”,使用可调的髋-膝-踝(HKA)角度阈值 该模型首次从膝关节X光片中分类腿部对齐,提供了一种实用的替代全腿X光片的方法 模型的性能依赖于X光片的质量和定位框架的使用 提高研究人群选择和患者管理的精确性 膝关节前后位(AP)/后前位(PA)X光片 计算机视觉 膝骨关节炎 深度学习 深度学习模型 图像 8878张数字X光片,包括6181张全腿X光片和2697张膝关节X光片
1532 2025-01-15
Differentiating Choroidal Melanomas and Nevi Using a Self-Supervised Deep Learning Model Applied to Clinical Fundoscopy Images
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本研究测试了自监督深度学习模型RETFound在区分脉络膜黑色素瘤和痣方面的有效性 使用自监督深度学习模型RETFound进行脉络膜黑色素瘤和痣的区分,并在大规模不平衡数据集上验证其性能 研究仅基于单一中心的数据,未来计划在外部大规模队列上进行验证 验证自监督深度学习模型在脉络膜黑色素瘤和痣区分中的有效性 4255名患者的超广角眼底图像,包括18510张脉络膜黑色素瘤图像、8671张痣图像和1192张健康眼图像 数字病理学 脉络膜黑色素瘤 自监督深度学习 RETFound 图像 4255名患者的27333张眼底图像
1533 2025-01-07
Deep Learning to Predict the Future Growth of Geographic Atrophy from Fundus Autofluorescence
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本文开发了多种深度学习模型,利用眼底自发荧光(FAF)图像预测地理萎缩(GA)病变的1年增长区域(ROG) 首次使用深度学习模型预测GA病变的1年增长区域,并比较了不同时间点FAF图像的预测效果 研究为回顾性分析,可能受到数据选择和模型训练的限制 预测地理萎缩(GA)病变的1年增长区域,以支持临床试验和临床治疗决策 地理萎缩(GA)病变 计算机视觉 老年性疾病 深度学习 2D U-Net 图像 597名患者的研究眼数据,分为训练集(310)、验证集(78)和测试集(209)
1534 2025-01-06
Advances in deep learning for personalized ECG diagnostics: A systematic review addressing inter-patient variability and generalization constraints
2025-Mar-01, Biosensors & bioelectronics IF:10.7Q1
系统综述 本文系统综述了深度学习在心电图(ECG)个性化诊断中的应用,特别是针对患者间变异性和泛化限制的挑战 本文独特之处在于系统性地审查了专门为个性化ECG诊断设计的深度学习方法,强调解决患者特异性变异性的模型 这些方法的局限性包括在泛化与患者特异性之间取得平衡以及解决数据隐私问题 研究目的是探讨深度学习在ECG诊断中的应用,特别是针对个性化诊断的需求 研究对象是用于个性化ECG诊断的深度学习模型 机器学习 心血管疾病 迁移学习、生成对抗网络、元学习和领域适应 深度学习模型 ECG数据 112项研究
1535 2024-12-29
Accelerated cardiac cine with spatio-coil regularized deep learning reconstruction
2025-Mar, Magnetic resonance in medicine IF:3.0Q2
研究论文 本文提出了一种结合空间-线圈正则化的深度学习重建方法,用于加速心脏电影成像 提出了Spatio-Coil Regularized DL (SCR-DL)方法,结合多线圈信息进行数据一致性和正则化,显著提高了重建图像的质量 未提及具体样本量,且仅针对心脏电影成像进行了验证 开发一种加速心脏电影成像的深度学习重建方法 心脏电影成像数据 医学影像 心血管疾病 深度学习重建 SCR-DL 图像 NA
1536 2024-12-26
Deep learning model meets community-based surveillance of acute flaccid paralysis
2025-Mar, Infectious Disease Modelling IF:3.0Q1
研究论文 本研究提出了一种简单的深度学习模型,用于急性弛缓性麻痹(AFP)的社区监测,利用从埃塞俄比亚社区关键信息员通过手机收集的图像进行迁移学习 该研究首次将迁移学习应用于AFP监测,使用预训练的视觉Transformer模型,显著提高了监测的准确性和效率 研究的主要限制在于收集的图像数据质量,未来需要改进数据质量并建立专门的数据存储和分析平台 提高急性弛缓性麻痹(AFP)的社区监测效率,特别是在资源匮乏的环境中 埃塞俄比亚社区关键信息员通过手机收集的AFP相关图像 计算机视觉 急性弛缓性麻痹 迁移学习 视觉Transformer 图像 NA
1537 2024-12-15
Automated Detection of Central Retinal Artery Occlusion Using OCT Imaging via Explainable Deep Learning
2025 Mar-Apr, Ophthalmology science IF:3.2Q1
研究论文 本文展示了使用深度学习模型通过OCT影像自动检测视网膜中央动脉阻塞(CRAO)的能力 本文提出了一种可解释的深度学习模型,用于在OCT数据上检测CRAO,并展示了其在多分类任务中的高准确性 本文仅进行了回顾性外部验证研究,未来需要进一步的前瞻性研究来验证模型的临床应用 开发和验证一种深度学习模型,用于通过OCT影像自动检测视网膜中央动脉阻塞(CRAO) 视网膜中央动脉阻塞(CRAO)及其鉴别诊断 计算机视觉 眼科疾病 深度学习 深度学习模型 图像 来自德国蒂宾根大学医学中心和汉堡-埃彭多夫大学医学中心的患者的OCT数据
1538 2024-12-13
Deep learning-assisted surface-enhanced Raman spectroscopy detection of intracellular reactive oxygen species
2025-Mar-01, Talanta IF:5.6Q1
研究论文 本文结合表面增强拉曼光谱(SERS)技术和深度学习,建立了一种基于神经网络的细胞内活性氧(ROS)智能检测方法 本文创新性地将SERS技术与深度学习相结合,利用神经网络模型提高了SERS分析能力,并实现了对细胞内ROS的初步浓度预测 本文仅以过氧亚硝酸盐(ONOO)和次氯酸盐(ClO)的同时检测为模板,未来可能需要扩展到更多种类的ROS检测 实现细胞内活性氧的智能分析,以促进疾病的快速诊断 细胞内活性氧(ROS),特别是过氧亚硝酸盐(ONOO)和次氯酸盐(ClO) 机器学习 NA 表面增强拉曼光谱(SERS) 神经网络模型(ENN)和一维卷积神经网络模型(1D-CNN) 光谱数据 AuNP/4-MPBA/2-MP纳米探针的SERS光谱数据
1539 2024-12-12
Adaptive Multicore Dual-Path Fusion Multimodel Extraction of Heterogeneous Features for FAIMS Spectral Analysis
2025-Mar, Rapid communications in mass spectrometry : RCM IF:1.8Q2
研究论文 本文提出了一种自适应多核双路径融合多模型提取异构特征的模型,用于FAIMS光谱分析 通过多模型特征提取实现多网络互补,自适应特征融合模块调整特征大小和维度融合,多核双路径融合能够捕捉和整合多尺度和多层次的信息 NA 提高FAIMS光谱分析的分析效果和工作效率 FAIMS光谱数据 机器学习 NA FAIMS 多模型特征提取 光谱数据 小样本数据
回到顶部