本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181 | 2025-05-27 |
Hybrid AI models for predicting heat distribution in complex tissue structures with bioheat transfer simulation
2025-Apr, Journal of thermal biology
IF:2.9Q1
DOI:10.1016/j.jtherbio.2025.104122
PMID:40311397
|
研究论文 | 本文提出了一种结合深度学习与分数阶Legendre小波方法的生物热传递模型,用于精确预测工程组织构建中的热效应 | 该模型整合了分数阶Legendre小波方法,实现了比传统方法快15%的热预测速度,并在多种组织类型中保持预测误差低于0.4°C | 实验验证仅针对5厘米组织构建体进行,未涉及更复杂或更大规模的组织结构 | 提高生物组织热行为的预测精度,以支持热疗、热消融和组织工程等医疗应用 | 工程组织构建体(包括皮肤、肌肉、脂肪和骨骼等多种组织类型) | 生物医学工程 | NA | 深度学习增强的生物热传递模拟 | 深度学习与分数阶Legendre小波混合模型 | 热分布数据 | 5厘米组织构建体,暴露于15W热源120分钟 |
182 | 2025-05-26 |
Development and validation of a multivariable risk model based on clinicopathological characteristics, mammography, and MRI imaging features for predicting axillary lymph node metastasis in patients with upgraded ductal carcinoma in situ
2025-Apr-30, Gland surgery
IF:1.5Q3
DOI:10.21037/gs-2025-89
PMID:40405957
|
研究论文 | 开发并验证了一个基于临床病理特征、乳腺X线摄影和MRI影像特征的多变量风险模型,用于预测升级导管原位癌患者的腋窝淋巴结转移 | 结合临床病理特征、MRI影像组学和乳腺X线摄影深度学习模型,构建了一个融合模型,显著提高了预测腋窝淋巴结转移的准确性和稳健性 | 研究为回顾性分析,样本量相对有限(326例患者) | 预测升级导管原位癌患者的腋窝淋巴结转移,以减少不必要的腋窝手术干预 | 升级导管原位癌患者 | 数字病理 | 乳腺癌 | MRI影像组学、深度学习 | 融合模型(结合临床病理模型、MRI影像组学模型和深度学习模型) | 临床病理数据、MRI影像、乳腺X线摄影图像 | 326例升级导管原位癌患者 |
183 | 2025-05-26 |
Malignant risk prediction of cystic-solid thyroid nodules using a comprehensive model integrating clinical and ultrasound features, ultrasound radiomics, and deep transfer learning
2025-Apr-30, Gland surgery
IF:1.5Q3
DOI:10.21037/gs-2024-551
PMID:40405959
|
research paper | 本研究开发了一个综合模型,结合临床和超声特征、超声放射组学及深度迁移学习,用于预测囊实性甲状腺结节(CSTN)的恶性风险 | 首次将深度迁移学习(DTL)、超声放射组学与临床和超声特征结合,构建综合模型预测CSTN的恶性风险 | 研究为回顾性分析,样本量相对较小(278例),且来自单一医疗机构,可能影响结果的普遍性 | 探索综合模型在预测囊实性甲状腺结节恶性风险中的价值 | 278例经病理证实的囊实性甲状腺结节患者 | digital pathology | thyroid cancer | ultrasound imaging, deep transfer learning, radiomics | logistic regression, LASSO, DTL | ultrasound images | 278 patients with cystic-solid thyroid nodules |
184 | 2025-05-25 |
CPDMS: a database system for crop physiological disorder management
2025-Apr-22, Database : the journal of biological databases and curation
DOI:10.1093/database/baaf031
PMID:40261733
|
research paper | 本研究开发了一个用于实时收集和分析番茄生理障碍图像的系统,构建了一个包含多种胁迫条件下番茄图像的数据库 | 开发了一个系统化的番茄生理障碍图像收集与分析系统,并构建了一个大规模的图像数据库 | AI模型的平均精度(mAP)和召回率仍有提升空间 | 开发一个用于精准农业的实时作物图像收集与分析系统 | 番茄生理障碍 | digital pathology | NA | deep learning | CNN | image | 58,479张番茄图像(其中43,894张适合标注,24,000张用于模型训练,13,037张用于模型测试) |
185 | 2025-05-25 |
Genetic and Environmental Factors Affecting Hair Density in East Asian Populations
2025-Apr-19, The British journal of dermatology
DOI:10.1093/bjd/ljaf149
PMID:40251992
|
研究论文 | 本研究通过大规模定量评估和基因组关联分析,探讨了东亚人群头发密度的遗传和环境影响因素 | 首次在东亚人群中识别出三个与头发密度相关的遗传位点,并揭示了这些基因在毛囊发育中的功能作用,同时发现基因型特异性对非那雄胺的反应 | 研究样本仅来自东亚人群,结果可能不适用于其他族群 | 识别影响东亚人群头发密度的遗传和环境因素,并探索与其他头发特征和疾病的共享遗传影响 | 5,735名东亚个体的头发密度特征 | 遗传学 | 脱发疾病 | GWAS、C-GWAS、meta分析、深度学习图像分析 | 深度学习模型(未指定具体类型) | 图像数据(毛发镜图像)、基因组数据 | 5,735名东亚个体 |
186 | 2025-05-24 |
Pleural invasion of peripheral cT1 lung cancer by deep learning analysis of thoracoscopic images: a retrospective pilot study
2025-Apr-30, Journal of thoracic disease
IF:2.1Q3
DOI:10.21037/jtd-24-1510
PMID:40400958
|
研究论文 | 本研究开发了一种深度学习算法,通过胸腔镜图像预测外周cT1肺癌的胸膜侵犯 | 首次使用深度学习分析胸腔镜图像来预测胸膜侵犯,为术中评估提供新方法 | 样本量较小(80例患者),且为回顾性研究 | 开发预测胸膜侵犯的深度学习算法,以指导手术决策 | 外周cT1N0M0非小细胞肺癌患者 | 数字病理 | 肺癌 | 深度学习图像分析 | ResNet50 | 图像 | 80例患者(422,873张图像) |
187 | 2025-05-24 |
Multimodal radiopathological integration for prognosis and prediction of adjuvant chemotherapy benefit in resectable lung adenocarcinoma: A multicentre study
2025-Apr-28, Cancer letters
IF:9.1Q1
DOI:10.1016/j.canlet.2025.217557
PMID:39954935
|
研究论文 | 开发并验证了一个多模态分析框架,整合CT图像和H&E染色的全切片图像(WSIs),以增强肺腺癌(LUAD)患者的风险分层和辅助化疗获益预测 | 首次整合放射组学和病理组学特征,构建了一个多模态签名,用于预测LUAD患者的预后和辅助化疗获益,其性能优于现有的深度学习方法 | 研究为回顾性设计,需要前瞻性研究进一步验证 | 提高肺腺癌患者的风险分层和辅助化疗获益预测的准确性 | 1039例可切除的肺腺癌患者(I-III期) | 数字病理 | 肺癌 | CT成像和H&E染色全切片图像分析 | 生存支持向量机(SVM) | 图像 | 1039例患者(训练数据集303例,测试数据集197例和228例,特征测试数据集311例) |
188 | 2025-05-24 |
CPDMS: a database system for crop physiological disorder management
2025-Apr-22, Database : the journal of biological databases and curation
DOI:10.1093/database/baaf031
PMID:40402767
|
研究论文 | 开发了一个用于实时收集和分析作物生理障碍图像的系统,特别针对番茄的生理障碍 | 开发了一个可扩展且高效的实时作物图像收集系统,并利用深度学习模型进行图像分析 | 模型的平均精度(mAP)和召回率仍有提升空间 | 为精准农业提供实时数据收集和分析工具 | 番茄的生理障碍 | 数字农业 | 番茄细菌性枯萎病(BW)、番茄黄化曲叶病毒(TYLCV)、番茄斑萎病毒(TSWV)、干旱和盐胁迫 | 深度学习 | 深度学习模型 | 图像 | 58,479张图像(其中43,894张适合标注,24,000张用于模型训练,13,037张用于模型测试) |
189 | 2025-05-24 |
Autonomous object tracking with vision based control using a 2DOF robotic arm
2025-Apr-18, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97930-3
PMID:40251241
|
研究论文 | 本文设计了一种基于视觉控制的2自由度机械臂自主物体追踪系统 | 提出了一种结合深度学习物体检测框架和基于图像的视觉伺服(IBVS)的新方法,用于2自由度机械臂的追踪控制 | 仅验证了2自由度机械臂的性能,未测试更高自由度的系统 | 设计精确且响应迅速的物体追踪系统,解决传统系统复杂、刚性、需要多传感器等问题 | 2自由度机械臂 | 机器视觉 | NA | 基于图像的视觉伺服(IBVS),深度学习物体检测 | 深度学习框架 | 图像 | 使用CoppeliaSim机器人模拟器和2-DOF机械臂进行仿真和实验验证 |
190 | 2025-05-24 |
Large language models deconstruct the clinical intuition behind diagnosing autism
2025-Apr-17, Cell
IF:45.5Q1
DOI:10.1016/j.cell.2025.02.025
PMID:40147442
|
research paper | 利用深度学习解构专家临床直觉,以改进自闭症诊断标准 | 通过大型语言模型(LLMs)分析临床报告,揭示自闭症诊断中的关键因素,挑战现有诊断标准 | 研究依赖于有限的临床报告样本(>4,000份),可能无法涵盖所有自闭症病例的多样性 | 解构临床专家直觉,改进自闭症诊断标准 | 自闭症患者的临床报告 | natural language processing | autism | large language models (LLMs) | LLMs | text | >4,000份自由格式健康记录 |
191 | 2025-05-24 |
Difficulty aware programming knowledge tracing via large language models
2025-Apr-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96540-3
PMID:40181055
|
research paper | 该论文提出了一种基于大型语言模型的难度感知编程知识追踪方法(DPKT),用于评估编程问题的文本理解难度和知识概念难度,并动态更新学生的知识状态 | 结合注意力机制分析知识概念难度与文本理解难度的关系,并采用更新门机制和图注意力网络,显著提高了编程问题难度的评估准确性和知识状态的时空反映能力 | 未提及具体的数据集规模限制或模型在其他领域的泛化能力 | 提高编程知识追踪的准确性,促进个性化学习 | 学生在智能辅导系统中的交互数据 | natural language processing | NA | large language models, attention mechanism, graph attention network | DPKT (Difficulty aware Programming Knowledge Tracing) | text | 未提及具体样本数量 |
192 | 2025-05-24 |
Assessing the risk of takeover catastrophe from large language models
2025-Apr, Risk analysis : an official publication of the Society for Risk Analysis
IF:3.0Q1
DOI:10.1111/risa.14353
PMID:38945529
|
research paper | 本文对大型语言模型(LLMs)进行了风险分析,特别关注其可能导致极端灾难(如接管世界并杀死所有人)的风险 | 首次针对实际AI系统(而非假设的未来系统)引发接管灾难的担忧进行分析,比较现有LLMs与理论文献中AI接管所需特性的差异 | 分析基于当前LLMs的能力,未来LLMs可能存在意外能力,专家对深度学习算法的看法存在分歧 | 评估大型语言模型引发接管灾难的风险 | 大型语言模型(如ChatGPT和GPT-4) | natural language processing | NA | NA | LLM | text | NA |
193 | 2025-05-24 |
Personalized Blood Glucose Forecasting From Limited CGM Data Using Incrementally Retrained LSTM
2025-04, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3494732
PMID:39514345
|
research paper | 该研究提出了一种名为增量重训练堆叠LSTM(IS-LSTM)的新型深度学习框架,用于从有限的连续血糖监测(CGM)数据中进行个性化血糖预测 | 提出增量重训练堆叠LSTM框架,能够逐步适应个体数据并采用参数迁移提高效率,解决了传统方法需要大量训练数据的问题 | 研究仅针对1型糖尿病患者,未涉及其他类型糖尿病 | 开发一种能够从有限CGM数据中进行准确血糖预测的个性化方法 | 1型糖尿病患者的血糖数据 | machine learning | 糖尿病 | 连续血糖监测(CGM) | LSTM | 时间序列数据 | 两个CGM数据集:OpenAPS和Replace-BG |
194 | 2025-05-24 |
Leveraging Natural Language Processing and Machine Learning Methods for Adverse Drug Event Detection in Electronic Health/Medical Records: A Scoping Review
2025-Apr, Drug safety
IF:4.0Q1
DOI:10.1007/s40264-024-01505-6
PMID:39786481
|
综述 | 本文通过范围综述总结了利用自然语言处理(NLP)和机器学习(ML)技术从非结构化电子健康记录(EHR)数据中检测药物不良事件(ADEs)的有效性 | 综述了NLP/ML技术在药物警戒中的应用,展示了这些技术在检测未报告的不良事件和发现新的安全信号方面的潜力 | 研究中存在技术和方法学的异质性,缺乏标准化的方法和验证标准,阻碍了NLP/ML在药物警戒中的广泛应用 | 评估NLP/ML技术在药物警戒中的应用效果,以提高从非结构化EHR数据中检测ADEs的能力 | 非结构化电子健康记录(EHR)数据 | 自然语言处理 | NA | 自然语言处理(NLP)、机器学习(ML) | 基于规则的NLP、统计模型、深度学习 | 非结构化文本数据 | 七项研究符合纳入标准 |
195 | 2025-05-24 |
Deep Learning-Based Event Counting for Apnea-Hypopnea Index Estimation Using Recursive Spiking Neural Networks
2025-04, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2024.3498097
PMID:40030371
|
research paper | 提出了一种基于深度学习的递归脉冲神经网络方法RSN-Count,用于家庭环境中睡眠呼吸暂停的筛查,重点在于无需精确定位事件即可可靠估计呼吸暂停低通气指数(AHI) | 利用脉冲神经网络直接计数呼吸暂停事件,减少对事件时间精确定位的依赖,提高了AHI估计的准确性 | 研究样本量较小(N = 33),可能影响结果的普遍性 | 改进家庭环境中的睡眠呼吸暂停筛查方法 | 睡眠呼吸暂停患者 | machine learning | sleep apnea | Spiking Neural Networks | RSN-Count | audio and SpO recordings | 33名患者的整夜音频和血氧记录 |
196 | 2025-05-24 |
Brain-wide 3D neuron detection and mapping with deep learning
2025-Apr, Neurophotonics
IF:4.8Q1
DOI:10.1117/1.NPh.12.2.025012
PMID:40401216
|
research paper | 该论文介绍了一种名为NeuronMapper的全脑3D神经元检测与映射方法,利用深度学习技术实现自动化且可靠的神经元检测与定位 | 提出了一种四阶段框架(预处理、分类、检测和映射),结合轻量级分类网络和基于Video Swin Transformer的分割网络,实现了百万级别小鼠全脑神经元的高精度检测与定位 | 目前仅在小鼠脑数据上验证,尚未在其他物种或更复杂脑区测试 | 开发自动化神经元检测与映射技术以理解神经回路功能 | 小鼠全脑成像数据中的神经元胞体 | digital pathology | NA | 3D成像、深度学习 | Video Swin Transformer | 3D图像 | 百万级别小鼠神经元 |
197 | 2025-05-23 |
Estimating hair density with XGBoost
2025-Apr, International journal of cosmetic science
IF:2.7Q2
DOI:10.1111/ics.13030
PMID:39551627
|
研究论文 | 本研究探索使用XGBoost算法进行头发密度估计,旨在开发一种更准确和通用的方法 | 采用XGBoost算法进行头发密度估计,相比之前的方法在测试集上达到了95.3%的准确率,显著优于其他研究 | 研究仅使用了895张头皮图像,样本量可能不足以覆盖所有临床情况 | 开发一种更准确和通用的头发密度估计方法 | 头皮图像 | 计算机视觉 | NA | 图像处理 | XGBoost | 图像 | 895张头皮图像(745张用于训练,150张用于测试) |
198 | 2025-05-23 |
Generalizable Magnetic Resonance Imaging-based Nasopharyngeal Carcinoma Delineation: Bridging Gaps Across Multiple Centers and Raters With Active Learning
2025-Apr-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2024.11.064
PMID:39557309
|
研究论文 | 开发了一种利用主动学习和无源域适应的深度学习方法,用于鼻咽癌(NPC)大体肿瘤体积的勾画,以解决在多中心和多位评估者环境中部署分割模型时的变异性和不准确性问题 | 结合主动学习和无源域适应技术,显著减少了对目标域标记样本的需求,同时在多中心和多位评估者环境中实现了与全监督模型相当的性能 | 虽然减少了标记样本的需求,但仍需要一定量的目标域标记数据(20%)进行适应 | 开发一种能够准确且可推广的鼻咽癌大体肿瘤体积分割方法,以克服多中心和多位评估者环境中的变异性和不准确性 | 鼻咽癌患者的磁共振成像(MRI)扫描 | 数字病理 | 鼻咽癌 | 主动学习,无源域适应 | U-Net | MRI图像 | 1057例来自5家医院的鼻咽癌患者MRI扫描,以及另外170例由4位独立专家标注的患者数据 |
199 | 2025-05-23 |
Primary angle-closed diseases recognition through artificial intelligence-based anterior segment-optical coherence tomography imaging
2025-Apr, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
DOI:10.1007/s00417-024-06709-1
PMID:39680113
|
研究论文 | 本研究利用人工智能技术对前段光学相干断层扫描(AS-OCT)图像进行深度学习分类,自动分析AS-OCT图像的角结构并分类前房角,以提高AS-OCT图像分析的效率 | 开发了一种基于深度学习的AS-OCT图像自动前房角分析软件,并应用迁移学习于ResNet-50架构,实现了高效的前房角闭合检测 | 样本主要来自上海社区的老年人青光眼筛查项目,可能限制了结果的普适性 | 提高AS-OCT图像分析的效率,自动化前房角的临床评估 | AS-OCT图像 | 计算机视觉 | 青光眼 | 光学相干断层扫描(OCT) | ResNet-50 | 图像 | 687名参与者的94895张AS-OCT图像 |
200 | 2025-05-23 |
Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model
2025-Apr, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
DOI:10.1007/s00417-024-06687-4
PMID:39680112
|
research paper | 该研究通过深度学习模型的多尺度特征融合,提高了糖尿病视网膜病变和黄斑水肿的自动检测准确率 | 采用独特的融合技术结合高级语义输入和低级纹理特征,提升了诊断准确性 | 研究仅使用了MESSIDOR数据集,可能在其他数据集上的泛化能力未经验证 | 提高糖尿病视网膜病变和黄斑水肿的早期自动检测准确率 | 糖尿病视网膜病变和黄斑水肿的视网膜图像 | digital pathology | diabetic retinopathy | deep learning | CNN | image | MESSIDOR数据集中的视网膜图像 |