本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
221 | 2025-05-16 |
Evaluating Traditional, Deep Learning and Subfield Methods for Automatically Segmenting the Hippocampus From MRI
2025-Apr-01, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.70200
PMID:40143669
|
研究论文 | 评估传统方法、深度学习和海马亚区方法在MRI中自动分割海马体的性能 | 首次独立比较传统方法、深度学习方法和海马亚区分割方法在单一研究中的性能 | 大多数方法在临床数据上表现较差,且存在过度分割的问题,特别是在海马体前边界 | 评估和比较不同自动海马体分割方法的性能 | 海马体 | 神经影像 | 认知障碍 | MRI | 深度学习 | 图像 | 3个数据集,包含手动分割的海马体标签 |
222 | 2025-05-16 |
Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD
2025-Apr-01, Journal of the American College of Cardiology
IF:21.7Q1
DOI:10.1016/j.jacc.2025.01.030
PMID:40139886
|
研究论文 | 本研究开发了一种基于集成深度学习的算法PRESENT-SHD,用于通过12导联心电图图像自动检测和预测结构性心脏病 | 首次利用心电图图像开发集成深度学习模型PRESENT-SHD,用于多种结构性心脏病的自动化筛查和风险分层 | 研究主要基于医院数据,在一般人群中的适用性需要进一步验证 | 开发自动化工具用于结构性心脏病的早期筛查和风险预测 | 结构性心脏病患者的心电图图像 | 数字病理学 | 心血管疾病 | 深度学习 | CNN与XGBoost集成模型 | 图像 | 261,228份心电图(来自93,693名患者)用于模型开发,11,023名个体用于验证 |
223 | 2025-05-16 |
Deep structural brain imaging via computational three-photon microscopy
2025-Apr, Journal of biomedical optics
IF:3.0Q2
DOI:10.1117/1.JBO.30.4.046002
PMID:40161251
|
research paper | 开发了一种名为LRDM-3PM的计算深度三光子显微镜方法,用于提高深层组织的成像质量 | 结合了定制化的聚集诱导发射纳米探针和自监督深度学习,利用3D图像的表层信息补偿散射和成像系统的结构化噪声 | NA | 改进深层组织的成像技术,提高图像质量而不影响采集速度、增加激发功率或添加额外光学组件 | 活体小鼠大脑的海马体 | computational imaging | NA | three-photon microscopy (3PM), deep learning | low-rank diffusion model (LRDM) | 3D images | live mouse brains |
224 | 2025-05-15 |
EBMGP: a deep learning model for genomic prediction based on Elastic Net feature selection and bidirectional encoder representations from transformer's embedding and multi-head attention pooling
2025-Apr-19, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
DOI:10.1007/s00122-025-04894-z
PMID:40253568
|
研究论文 | 提出了一种基于Elastic Net特征选择和双向编码器表示转换器嵌入与多头注意力池化的深度学习模型EBMGP,用于基因组预测 | 结合Elastic Net特征选择、双向编码器表示转换器嵌入和多头注意力池化,显著提高了基因组预测的准确性和计算效率 | 未提及具体局限性 | 通过基因组预测加速育种程序,减少世代间隔 | 植物和动物的基因组数据 | 机器学习 | NA | Elastic Net特征选择、双向编码器表示转换器嵌入、多头注意力池化 | EBMGP | 基因组数据 | 四个不同的植物和动物数据集 |
225 | 2025-05-15 |
Optimizing Immunotherapy: The Synergy of Immune Checkpoint Inhibitors with Artificial Intelligence in Melanoma Treatment
2025-Apr-16, Biomolecules
IF:4.8Q1
DOI:10.3390/biom15040589
PMID:40305346
|
综述 | 本文综述了人工智能(AI)在优化黑色素瘤免疫检查点抑制剂(ICI)治疗中的潜力,重点关注预测模型、生物标志物识别和治疗反应预测 | AI与RNAseq分析结合开发个性化ICI治疗,机器学习模型识别与nivolumab清除相关的预后细胞因子特征,深度学习算法在肿瘤微环境分析中表现出高准确性 | 临床验证和实施挑战仍然存在 | 优化黑色素瘤的免疫治疗 | 黑色素瘤患者 | 数字病理学 | 黑色素瘤 | RNAseq, 电子健康记录(EHR)数据分析 | 机器学习, 深度学习 | 影像数据, 实验室数据, EHR数据 | NA |
226 | 2025-05-15 |
Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions
2025-Apr-13, Biomedicines
IF:3.9Q1
DOI:10.3390/biomedicines13040951
PMID:40299653
|
综述 | 本文回顾了人工智能在肿瘤学中的最新进展,重点关注计算机辅助诊断的早期检测、个性化治疗策略和药物发现 | 探讨了人工智能与纳米医学和免疫疗法的整合,以及比较了AI模型与传统诊断方法的优势 | 数据质量、算法偏见和临床验证等挑战限制了广泛采用 | 探索人工智能在肿瘤学中的应用及其潜力,以改善癌症诊断、治疗和管理 | 癌症研究和治疗 | 机器学习 | 癌症 | 深度学习 | NA | NA | NA |
227 | 2025-05-15 |
Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review
2025-Apr-13, Children (Basel, Switzerland)
DOI:10.3390/children12040498
PMID:40310141
|
review | 本文综述了人工智能和机器学习在坏死性小肠结肠炎(NEC)和新生儿败血症精准医学中的最新进展 | AI和ML模型在NEC风险分层、早期诊断和治疗策略优化方面展现出比传统临床方法更高的准确性,并发现了与疾病发作和严重程度相关的新生物标志物 | 数据异质性、模型可解释性以及需要大规模验证研究等挑战仍然存在 | 探索AI和ML在NEC预测、早期诊断和管理中的应用 | 坏死性小肠结肠炎(NEC)和新生儿败血症 | machine learning | necrotizing enterocolitis, neonatal sepsis | AI, ML, deep learning | NA | medical imaging, clinical data | NA |
228 | 2025-04-14 |
Deep Learning-Based Detection and Severity Assessment of Bicuspid Aortic Valve Stenosis
2025-Apr-11, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
IF:5.4Q1
DOI:10.1016/j.echo.2025.04.002
PMID:40220934
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
229 | 2025-05-15 |
Development and Validation of a Novel Deep Learning Model to Predict Pharmacologic Closure of Patent Ductus Arteriosus in Premature Infants
2025-Apr-11, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
IF:5.4Q1
DOI:10.1016/j.echo.2025.03.018
PMID:40220935
|
研究论文 | 开发并验证了一种新型深度学习模型,用于预测早产儿动脉导管未闭(PDA)药物闭合的可能性 | 首次将深度学习方法应用于预测PDA药物闭合效果,并开发了多模态CNN模型,其性能优于传统模型 | 研究样本量较小(174例),且为回顾性研究 | 预测早产儿PDA药物闭合的成功率,以优化临床决策 | 早产儿(174例)的PDA病例 | 数字病理学 | 心血管疾病 | 深度学习 | CNN(卷积神经网络) | 图像(超声心动图)和临床数据 | 174名早产儿,共1926个超声心动图片段 |
230 | 2025-05-15 |
The Relevance of General Intelligence Measurement in Deep Learning for Healthcare
2025-04-08, Studies in health technology and informatics
DOI:10.3233/SHTI250052
PMID:40200449
|
research paper | 探讨通用智能测量在医疗健康领域深度学习中的重要性 | 研究了不同层次的泛化(局部、广泛和极端)在医疗AI系统中的贡献和限制,并指出现有评估方法的不足 | 现有评估泛化难度的指标仍不充分,需要开发新的评估方法 | 提高AI系统在复杂临床环境中的有效性和适应性 | 医疗AI系统 | machine learning | NA | NA | NA | NA | NA |
231 | 2025-05-15 |
Deep-Learning-Based AI-Model for Predicting Dental Plaque in the Young Permanent Teeth of Children Aged 8-13 Years
2025-Apr-07, Children (Basel, Switzerland)
DOI:10.3390/children12040475
PMID:40310101
|
研究论文 | 本研究开发了一种基于深度学习的AI模型,用于预测8-13岁儿童年轻恒牙中的牙菌斑 | 使用U-Net Transformer模型在牙菌斑检测和分割中表现出优于经验丰富的儿科牙医的临床性能 | 样本量较小,仅包含31名患者的506张牙齿图像 | 开发一种快速、可靠的牙菌斑检测和分割方法,以改善儿童口腔健康管理 | 8-13岁儿童的年轻恒牙 | 计算机视觉 | 口腔疾病 | 深度学习 | U-Net Transformer | 图像 | 31名患者的506张牙齿图像 |
232 | 2025-05-15 |
Molecular Modelling in Bioactive Peptide Discovery and Characterisation
2025-Apr-03, Biomolecules
IF:4.8Q1
DOI:10.3390/biom15040524
PMID:40305228
|
review | 本文综述了分子建模在生物活性肽发现和表征中的应用及其最新进展 | 整合人工智能技术,特别是深度学习模型如AlphaFold和蛋白质语言模型(PLMs),显著提升了肽构象和相互作用的预测能力 | 现有方法在整合非经典氨基酸和环化结构方面仍面临挑战 | 探讨分子建模技术在生物活性肽发现和表征中的应用及其发展 | 生物活性肽的结构特性及其与生物靶标的相互作用 | 生物信息学 | NA | 分子建模、分子对接、分子动力学(MD)、虚拟筛选、深度学习 | AlphaFold、蛋白质语言模型(PLMs) | 蛋白质序列和结构数据 | NA |
233 | 2025-05-15 |
Deep Learning-Assisted SERS for Therapeutic Drug Monitoring of Clozapine in Serum on Plasmonic Metasurfaces
2025-Apr-02, Nano letters
IF:9.6Q1
DOI:10.1021/acs.nanolett.5c00391
PMID:40111434
|
研究论文 | 提出了一种结合人工神经网络(ANNs)与表面增强拉曼光谱(SERS)的新方法,用于快速监测血清中的氯氮平及其代谢物 | 首次将ANN与SERS技术结合在等离子体超表面上,用于氯氮平及其代谢物的治疗药物监测 | NA | 开发一种快速、精确的治疗药物监测方法,以优化氯氮平的治疗效果并减少副作用 | 氯氮平及其两种主要代谢物(去甲氯氮平和氯氮平-N-氧化物)在人体血清中的浓度 | 生物医学诊断 | 精神分裂症 | 表面增强拉曼光谱(SERS) | 人工神经网络(ANNs) | 光谱数据 | NA |
234 | 2025-05-15 |
[Transformation of free-text radiology reports into structured data]
2025-Apr, Radiologie (Heidelberg, Germany)
DOI:10.1007/s00117-025-01422-4
PMID:39934245
|
研究论文 | 本文探讨了利用大型语言模型(LLMs)将非结构化的放射学报告转换为结构化数据的挑战、方法及可靠性问题 | 探讨了LLMs在放射学信息处理中的应用潜力,特别是结合领域特定知识(如本体)以提高系统性能 | 处理语言表达的模糊性、缩写及变异性仍存在挑战 | 研究如何利用LLMs将自然语言放射学报告转换为结构化数据,以提高临床决策支持系统、研究和患者护理的效率 | 放射学报告 | 自然语言处理 | NA | 大型语言模型(LLMs)、基于规则的系统、机器学习、深度学习模型 | 神经网络架构 | 文本 | NA |
235 | 2025-05-15 |
Past, Present, and Future: A History Lesson in Artificial Intelligence
2025-Apr, Gastrointestinal endoscopy clinics of North America
DOI:10.1016/j.giec.2024.09.003
PMID:40021228
|
review | 回顾人工智能在过去50年的发展历程及其在医学领域的应用 | 总结了AI在胃肠病学中的革命性应用,并展望了未来的发展方向 | 需要解决透明度、责任和伦理问题 | 探讨人工智能在医学领域的历史、现状和未来趋势 | 人工智能在胃肠病学中的应用 | machine learning | NA | NA | NA | NA | NA |
236 | 2025-05-15 |
Reduction of Acquisition Time in Fourier Transform Infrared Spectral Imaging by Deep Learning for Clinical Applications
2025-Apr-01, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c06317
PMID:40095897
|
研究论文 | 本研究利用深度学习技术从低质量的红外图像中高效重建高质量图像,以减少临床应用中傅里叶变换红外光谱成像的采集时间 | 结合ResUNet架构和1D-CNN,能够从低质量图像中高保真地重建高质量红外图像,节省超过95%的采集时间 | 重建图像在组织病理学上仅相当于16次扫描的图像质量,可能仍不足以满足某些高精度需求 | 减少傅里叶变换红外光谱成像的采集时间,同时保持高质量数据,以适应临床应用 | 来自肾移植受者的福尔马林固定石蜡包埋组织切片 | 数字病理 | 肾脏疾病 | 傅里叶变换红外光谱成像 | autoencoder, ResUNet, 1D-CNN, 2D-CNN | 红外图像 | NA |
237 | 2025-05-15 |
Ratiometric, 3D Fluorescence Spectrum with Abundant Information for Tetracyclines Discrimination via Dual Biomolecules Recognition and Deep Learning
2025-Apr-01, Analytical chemistry
IF:6.7Q1
DOI:10.1021/acs.analchem.4c07061
PMID:40099919
|
研究论文 | 本文提出了一种基于双生物分子识别和深度学习的比率型3D荧光光谱方法,用于准确区分四环素类抗生素 | 首次报道使用适配体在比率型3D荧光光谱中获取丰富信息,结合深度学习实现四环素类抗生素的准确区分 | NA | 开发一种新型的生物传感器方法,用于四环素类抗生素的准确区分 | 四环素类抗生素 | 生物传感器 | 细菌感染 | 3D荧光光谱 | 人工神经网络(ANN) | 光谱数据 | NA |
238 | 2025-05-15 |
Mining the UniProtKB/Swiss-Prot database for antimicrobial peptides
2025-Apr, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70083
PMID:40100125
|
研究论文 | 本研究提出了一种从UniProtKB/Swiss-Prot数据库中挖掘抗菌肽(AMPs)的工作流程,并利用AMPlify预测工具发现了8008种新型潜在AMPs | 首次大规模利用现代深度学习技术从公共蛋白质序列数据库中挖掘新型抗菌肽,并验证了部分肽的抗菌活性 | 仅针对真核生物序列进行挖掘,且仅测试了部分合成肽的抗菌活性 | 探索抗生素耐药性问题的替代解决方案,发现新型抗菌肽 | UniProtKB/Swiss-Prot数据库中的真核生物蛋白质序列 | 生物信息学 | 细菌感染 | 深度学习 | AMPlify | 蛋白质序列 | 8008种新型潜在AMPs(其中38种成功合成,13种显示抗菌活性) |
239 | 2025-05-15 |
Implementation of A New, Mobile Diabetic Retinopathy Screening Model Incorporating Artificial Intelligence in Remote Western Australia
2025-Apr, The Australian journal of rural health
DOI:10.1111/ajr.70031
PMID:40110918
|
研究论文 | 本文描述并评估了一种结合人工智能的新型移动糖尿病视网膜病变筛查模型在澳大利亚西部偏远地区的实施效果 | 首次在澳大利亚西部偏远地区实施结合AI的移动DR筛查模型,并证明其可显著提高筛查率 | 样本量较小(78名患者),且仅在一个地区实施 | 评估人工智能辅助的糖尿病视网膜病变筛查模型在偏远地区的可行性和有效性 | 澳大利亚Pilbara地区的糖尿病患者 | 数字病理 | 糖尿病视网膜病变 | 深度学习系统(DLS) | AI诊断系统 | 视网膜图像 | 78名患者(其中56.4%为原住民或托雷斯海峡岛民) |
240 | 2025-05-15 |
Artificial intelligence based detection and control strategies for river water pollution: A comprehensive review
2025-Apr, Journal of contaminant hydrology
IF:3.5Q2
DOI:10.1016/j.jconhyd.2025.104541
PMID:40112582
|
综述 | 本文详细综述了基于人工智能(AI)的技术和算法在河流水质污染检测与控制中的实际应用 | 突出了机器学习(ML)和深度学习(DL)技术的关键进展,包括ANN、DNN、LSTM和RF,并探讨了物联网(IoT)技术在实时监测和预测能力增强中的作用 | NA | 评估和综述AI技术在河流水质污染检测与控制领域的应用 | 河流水质污染 | 机器学习 | NA | 机器学习(ML)、深度学习(DL)、物联网(IoT) | ANN、DNN、LSTM、RF | 水质相关数据集 | 分析了2019年至2024年间超过110篇研究文章 |