本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
421 | 2025-05-07 |
Personalized auto-segmentation for magnetic resonance imaging-guided adaptive radiotherapy of large brain metastases
2025-Apr, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
IF:4.9Q1
DOI:10.1016/j.radonc.2025.110773
PMID:39914742
|
研究论文 | 本研究开发了一种两阶段的个性化深度学习自动分割(DLAS)模型,用于辅助大型脑转移瘤(BMs)的在线勾画 | 提出了一种个性化的深度学习自动分割模型,显著提高了大型脑转移瘤在磁共振引导自适应放疗(MRgART)中的勾画准确性和效率 | 研究样本量相对较小,仅包含20个大型脑转移瘤的741张日常在线MR图像 | 优化磁共振引导自适应放疗(MRgART)的工作流程,提高大型脑转移瘤的治疗效果 | 大型脑转移瘤(BMs) | 数字病理 | 脑转移瘤 | 磁共振成像(MRI) | 深度学习自动分割(DLAS)模型 | 图像 | 177个脑转移瘤的多序列图像用于基础模型训练,20个大型脑转移瘤的741张日常在线MR图像用于个性化模型开发 |
422 | 2025-03-23 |
Correction for Quach et al., Deep learning-driven bacterial cytological profiling to determine antimicrobial mechanisms in Mycobacterium tuberculosis
2025-Apr, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2504475122
PMID:40117323
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
423 | 2025-05-06 |
Deep Rib Fracture Instance Segmentation and Classification from CT on the RibFrac Challenge
2025-Apr-30, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3565514
PMID:40305244
|
research paper | 该论文介绍了RibFrac挑战赛,旨在通过深度学习算法解决CT扫描中肋骨骨折的检测和分类问题 | 提供了大规模标注数据集和评估基准,推动了深度学习算法在肋骨骨折检测和分类领域的发展 | 当前的肋骨骨折分类解决方案在临床上尚不适用 | 开发和验证用于肋骨骨折检测和分类的深度学习算法 | 肋骨骨折 | digital pathology | NA | CT扫描 | 深度学习算法 | image | 660 CT扫描,包含超过5,000个肋骨骨折实例 |
424 | 2025-05-06 |
Heterogeneous Riemannian Few-Shot Learning Network
2025-Apr-30, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2025.3561930
PMID:40305249
|
research paper | 提出了一种基于异构黎曼流形的少样本学习网络HRFL-Net,用于从少量样本中学习和准确区分新概念 | 首次在异构黎曼流形上进行端到端深度学习的少样本学习方法,设计了基于神经网络的黎曼度量学习方法 | 未明确提及具体限制 | 解决人工智能中从少量样本学习和区分新概念的问题 | 图像数据 | machine learning | NA | 异构黎曼流形投影、黎曼核函数映射、度量学习 | HRFL-Net | image | 四个公共数据集 |
425 | 2025-05-06 |
A simple yet effective approach for predicting disease spread using mathematically-inspired diffusion-informed neural networks
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-98398-x
PMID:40301427
|
research paper | 提出了一种结合传统数学建模和深度学习的模型,用于预测疾病传播 | 整合了人工神经网络和图卷积神经网络,简化参数估计同时保持数学框架的可解释性 | 仅应用于西班牙的COVID-19数据,未在其他地区或疾病上验证 | 提高疾病传播预测的准确性和参数估计的简化 | COVID-19在西班牙的传播情况 | machine learning | COVID-19 | deep learning | ANN, GCN | graph-structured data | 西班牙的COVID-19发病率数据 |
426 | 2025-05-06 |
Automated detection and recognition of oocyte toxicity by fusion of latent and observable features
2025-Apr-26, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.138411
PMID:40318589
|
research paper | 开发了一种结合深度学习和可观察特征的框架,用于自动检测和识别卵母细胞毒性 | 通过融合潜在特征和可观察特征,提高了毒性检测、亚型和强度分类的性能,超越了人类能力 | 研究仅基于小鼠卵母细胞图像,未涉及人类卵母细胞 | 评估环境污染物对卵母细胞异常的影响,并预测胚胎在污染物下的能力 | 小鼠卵母细胞 | digital pathology | infertility | deep learning | NA | image | 2126张小鼠卵母细胞图像 |
427 | 2025-05-06 |
Single Molecule Localization Super-resolution Dataset for Deep Learning with Paired Low-resolution Images
2025-Apr-23, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-04979-w
PMID:40268962
|
research paper | 本文介绍了一个名为DL-SMLM的生物图像数据集,用于训练超分辨率模型,包含配对的低分辨率荧光图像和超分辨率SMLM数据 | 提供了一个公开的生物图像数据集,包含多种亚细胞结构的配对图像数据,支持深度学习超分辨率显微镜方法的发展 | 数据集虽然多样,但可能仍不足以覆盖所有类型的生物样本或结构 | 推动深度学习在超分辨率显微镜领域的应用 | 亚细胞结构,包括微管、内质网腔和膜、Clathrin包被小坑、线粒体外膜和内膜 | digital pathology | NA | single molecule localization microscopy (SMLM) | deep learning models | image | 188组原始SMLM数据,每种低分辨率图像有100个信号水平 |
428 | 2025-05-06 |
Efficient urban flood control and drainage management framework based on digital twin technology and optimization scheduling algorithm
2025-Apr-22, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.123711
PMID:40319783
|
研究论文 | 本文提出了一种基于数字孪生技术和优化调度算法的高效城市防洪排涝管理框架 | 结合数字孪生实验平台、深度学习和多目标优化算法,提出创新的防洪排涝管理解决方案 | 未提及具体实施成本或平台部署的复杂性 | 提升城市防洪排涝系统的综合管理能力 | 城市河流湖泊水系及排水系统 | 数字孪生技术 | NA | PLC技术、Unity3D引擎、深度学习、多目标优化算法 | 深度学习模型 | 实时监测数据、水位数据 | 未明确提及具体样本数量,涉及多种河流流入和排水操作场景 |
429 | 2025-05-06 |
Continuous Reaching and Grasping with a BCI Controlled Robotic Arm in Healthy and Stroke-Affected Individuals
2025-Apr-19, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.04.16.25325551
PMID:40321282
|
研究论文 | 本研究提出了一种基于运动想象的脑机接口(BCI)范式,用于控制机器人手臂进行连续抓取任务,并在健康人群和中风患者中进行了评估 | 通过引入额外的‘点击’信号,增加了BCI系统的自由度,实现了对机器人手臂的连续控制,而非从预定动作列表中选择 | 当前系统的应用受限于EEG信号的低信噪比和空间分辨率 | 探索非侵入式脑机接口在控制辅助设备(如机器人手臂)中的应用,特别是在复杂任务中的表现 | 健康受试者和中风幸存者 | 脑机接口 | 中风 | EEG信号处理,深度学习 | DL | EEG信号 | 健康受试者和中风幸存者(具体数量未提及) |
430 | 2025-05-06 |
Large-Scale Deep Learning-Enabled Infodemiological Analysis of Substance Use Patterns on Social Media: Insights From the COVID-19 Pandemic
2025-Apr-17, JMIR infodemiology
IF:3.5Q1
DOI:10.2196/59076
PMID:40244656
|
研究论文 | 利用深度学习模型RoBERTa分析社交媒体数据,研究COVID-19大流行期间物质使用模式的变化 | 结合深度学习模型和人在回路策略,实时监测物质使用趋势,并识别关键影响因素 | 研究仅基于Twitter数据,可能无法全面代表所有人群的物质使用情况 | 分析COVID-19大流行期间物质使用模式的变化,为公共卫生干预提供依据 | 社交媒体上的物质使用相关帖子 | 自然语言处理 | NA | RoBERTa, 趋势分析, k-means聚类, 主题建模, 主题分析 | RoBERTa | 文本 | 11.3亿条Twitter帖子,其中900万条与物质使用相关 |
431 | 2025-05-06 |
Generating Artificial Patients With Reliable Clinical Characteristics Using a Geometry-Based Variational Autoencoder: Proof-of-Concept Feasibility Study
2025-Apr-17, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/63130
PMID:40245392
|
研究论文 | 本研究探讨了使用基于几何的变分自编码器(VAE)生成具有可靠临床特征的人工患者的可行性 | 首次将基于几何的VAE应用于高维度、小样本量的表格数据,以生成人工患者 | 需要进一步研究整合纵向动态以映射患者轨迹 | 测试生成具有可靠临床特征的人工患者的可行性 | 521名真实患者的数据 | 机器学习 | NA | 变分自编码器(VAE) | VAE | 表格数据 | 521名真实患者的数据,生成多达10,000名人工患者 |
432 | 2025-05-06 |
Deep learning-based EEG source imaging is robust under varying electrode configurations
2025-Apr-16, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
IF:3.7Q2
DOI:10.1016/j.clinph.2025.04.009
PMID:40318257
|
research paper | 该研究探讨了基于深度学习的EEG源成像方法在不同电极配置下的稳健性能 | 提出了一种新的深度学习源成像框架DeepSIF,能够在低密度EEG下实现准确的源定位和范围估计 | 研究主要基于计算机模拟和27名耐药性癫痫患者的临床数据,样本量相对较小 | 评估不同电极数量对深度学习EEG源成像性能的影响 | EEG源成像方法和不同电极配置下的性能比较 | machine learning | epilepsy | EEG source imaging | DeepSIF | EEG信号 | 27名耐药性癫痫患者 |
433 | 2025-05-06 |
A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer
2025-Apr-15, Cell reports. Medicine
DOI:10.1016/j.xcrm.2025.102032
PMID:40118052
|
研究论文 | 介绍了一种基于CT扫描的深度学习工具SALSA,用于自动检测和描绘癌症患者的肝脏肿瘤 | SALSA工具在肿瘤识别和体积量化方面表现出色,优于现有最先进模型和放射科专家之间的一致性 | 未提及具体局限性 | 开发一种自动化工具,用于癌症患者的肝脏肿瘤检测和描绘,以改善诊断、预后和治疗评估 | 肝脏肿瘤(原发性和转移性) | 数字病理学 | 癌症 | CT扫描 | 深度学习 | 图像 | 1,598例CT扫描和4,908个肝脏肿瘤 |
434 | 2025-05-06 |
Deep Learning Approach Readily Differentiates Papilledema, Non-Arteritic Anterior Ischemic Optic Neuropathy, and Healthy Eyes
2025-Apr-11, American journal of ophthalmology
IF:4.1Q1
DOI:10.1016/j.ajo.2025.04.006
PMID:40220884
|
research paper | 使用深度学习模型通过眼底照片区分视乳头水肿、非动脉炎性前部缺血性视神经病变和健康眼睛 | 开发了一个基于ResNet-50的深度学习模型,能够高准确度地区分IIH、NAION和健康眼睛的眼底照片 | 外部验证集的样本量相对较小,可能影响模型的泛化能力 | 开发一种能够准确区分视乳头水肿、非动脉炎性前部缺血性视神经病变和健康眼睛的深度学习诊断工具 | 眼底照片 | digital pathology | ophthalmic conditions | 深度学习 | ResNet-50 | image | 训练和验证集包含15 088张眼底照片(5866只眼睛),外部验证集包含1126张照片(928只眼睛) |
435 | 2025-05-06 |
AI analysis of medical images at scale as a health disparities probe: a feasibility demonstration using chest radiographs
2025-Apr-08, ArXiv
PMID:40297238
|
研究论文 | 本文探讨了利用医学影像数据作为健康差异研究新数据源的可行性 | 开发了一种从医学影像中自动提取定量指标并用于计算健康差异指数的流程 | 研究仅基于1,571例患者的胸部X光片,样本量有限 | 探索医学影像数据在健康差异研究中的应用潜力 | 1,571例患者的胸部X光片 | 数字病理学 | NA | 深度学习 | 深度学习模型 | 医学影像 | 1,571例患者 |
436 | 2025-05-06 |
Manifold Topological Deep Learning for Biomedical Data
2025-Apr-07, Research square
DOI:10.21203/rs.3.rs-6149503/v1
PMID:40297704
|
研究论文 | 本文首次提出流形拓扑深度学习(MTDL),将代数拓扑与深度神经网络结合,用于处理可微分流形上的数据,包括图像 | 首次将拓扑深度学习扩展到可微分流形数据,利用Hodge理论分解向量场并构建CNN输入 | 未明确提及具体局限性 | 开发适用于可微分流形数据的拓扑深度学习方法 | 可微分流形上的数据(包括图像) | 机器学习 | NA | Hodge理论 | CNN | 图像 | 717,287张生物医学图像(来自11个2D和6个3D数据集) |
437 | 2025-05-06 |
Fine extraction of multi-crop planting area based on deep learning with Sentinel- 2 time-series data
2025-Apr, Environmental science and pollution research international
DOI:10.1007/s11356-025-36405-4
PMID:40257731
|
研究论文 | 基于深度学习和Sentinel-2时间序列数据,提出了一种高效的多作物种植面积精细提取方法 | 设计了基于CNN-LSTM和Bi-LSTM的深度学习模型,结合月度合成的NDVI时间序列数据,实现了高精度的多作物分类 | 研究仅针对山东省的西北、西南和东部地区,可能在其他地区的适用性有待验证 | 为多作物分类提供一种基于高分辨率遥感时间序列数据的有效模型 | 山东省西北、西南和东部地区的多作物种植面积 | 计算机视觉 | NA | NDVI时间序列分析 | CNN-LSTM, Bi-LSTM | 遥感时间序列数据 | 山东省西北、西南和东部地区的多作物种植面积数据 |
438 | 2025-05-04 |
HoRNS-CNN model: an energy-efficient fully homomorphic residue number system convolutional neural network model for privacy-preserving classification of dyslexia neural-biomarkers
2025-Apr-30, Brain informatics
DOI:10.1186/s40708-025-00256-z
PMID:40304880
|
研究论文 | 介绍了一种名为HoRNS-CNN的能效高、全同态加密的卷积神经网络模型,用于保护隐私的阅读障碍神经生物标志物分类 | 结合了残数系统全同态加密方案(RNS-FHE)的能效特性和预训练深度CNN模型的高准确性,解决了现有FHE CNN模型在准确性、加密/解密延迟、能效、特征提取时间和密文图像扩展方面的问题 | NA | 开发一种能效高、隐私保护的深度学习模型,用于神经影像数据的分类 | 与阅读障碍相关的神经生物标志物 | 数字病理学 | 神经发育障碍 | 全同态加密(FHE), 残数系统(RNS) | CNN | 图像 | NA |
439 | 2025-05-04 |
Automatic melanoma and non-melanoma skin cancer diagnosis using advanced adaptive fine-tuned convolution neural networks
2025-Apr-30, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02279-8
PMID:40304929
|
research paper | 提出了一种使用自适应微调卷积神经网络(CNN)的智能计算机辅助系统,用于自动诊断黑色素瘤和非黑色素瘤皮肤癌 | 采用两阶段迁移学习方法和预训练CNN,通过PCA替换全连接层以挖掘皮肤癌图像的判别性特征,有效缓解过拟合问题 | 训练数据有限,可能存在过拟合风险,且传统方法存在高计算成本和缺乏可解释性的问题 | 开发一种高效、准确的自动皮肤癌诊断系统,以辅助医疗专业人员进行早期筛查 | 皮肤癌图像 | computer vision | skin cancer | deep learning, transfer learning, principal component analysis (PCA) | CNN | image | NA |
440 | 2025-05-04 |
Self-supervised learning for label-free segmentation in cardiac ultrasound
2025-Apr-30, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-59451-5
PMID:40307208
|
研究论文 | 本文提出了一种结合计算机视觉、临床知识和深度学习的自监督学习流程,用于心脏超声的无标签分割 | 开发了一种无需手动标注的自监督分割方法,其性能与监督学习相当,且具有临床有效性 | 虽然在大规模数据集上进行了测试,但部分结果的置信区间较宽,可能需要进一步验证 | 开发一种无需手动标注的心脏超声分割方法,提高分割效率和可重复性 | 心脏超声图像 | 计算机视觉 | 心血管疾病 | 深度学习 | 自监督学习 | 超声图像 | 450例超声心动图用于训练,18,423例用于测试(包括外部数据),其中553例有对应的心脏MRI |