本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 501 | 2025-05-03 |
MetaStackD A robust meta learning based deep ensemble model for prediction of sensors battery life in IoE environment
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97720-x
PMID:40301394
|
研究论文 | 提出了一种基于元学习的深度集成模型MetaStackD,用于预测IoE环境中传感器的剩余电池寿命 | 整合了预处理、标准化、编码方案和预测建模,引入了RFRImpute和MetaStackD两种算法,采用元学习深度集成方法分析功耗、环境条件、操作频率和工作负载模式等因素 | NA | 优化IoE环境中传感器的电池寿命预测,以提高网络性能和数据的可靠性 | IoE设备中的传感器 | 机器学习 | NA | 元学习、深度集成学习 | MetaStackD、Random Forest、Gradient Boosting、Light Gradient Boosting、Categorical Boosting、Extreme Gradient Boosting | 传感器数据 | 真实世界的芝加哥公园区海滩水IoE数据集 | NA | NA | NA | NA |
| 502 | 2025-05-03 |
High accuracy indoor positioning system using Galois field-based cryptography and hybrid deep learning
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97715-8
PMID:40301441
|
研究论文 | 提出了一种结合Galois域密码学和混合深度学习的室内高精度定位系统 | 结合了ECC加密解密方法、Deep-STAN混合模型以及区块链技术,提高了定位系统的准确性、安全性和稳定性 | 未提及系统在极端环境下的表现或大规模部署的可行性 | 解决传统室内定位系统在准确性、鲁棒性和安全性方面的不足 | 室内定位系统在智能制造和物流等环境中的应用 | 机器学习 | NA | Wi-Fi、蓝牙、磁力计信号处理,DBSCAN聚类,ECC加密 | Deep-STAN(结合CNN、ViT、LSTM和注意力机制) | 信号强度测量、上下文数据 | 未明确提及具体样本数量,但测试数据包含80%的数据子集 | NA | NA | NA | NA |
| 503 | 2025-05-03 |
Real-time airway monitoring system using binary classification model based on respiratory sounds of rabbits with a tracheostomy tube
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-98546-3
PMID:40301485
|
研究论文 | 开发了一种基于兔子气管切开术后呼吸音的实时气道监测系统,使用深度学习模型进行二元分类 | 首次使用深度学习评估气管切开兔子的气道状况,并开发了基于物联网的实时远程数据传输设备 | 研究使用的是兔子模型,而非人类数据,可能影响结果在人类中的适用性 | 开发一种连续、标准化的实时气道评估系统 | 气管切开术后的兔子 | 数字病理 | 呼吸系统疾病 | 深度学习 | CNN | 音频 | 29只新西兰兔,共1,443个呼吸周期(402个4秒呼吸音样本) | NA | NA | NA | NA |
| 504 | 2025-05-03 |
The data analysis of sports training by ID3 decision tree algorithm and deep learning
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99996-5
PMID:40301591
|
研究论文 | 本文提出了一种结合ID3决策树算法和深度学习模型的优化分析模型,以提高体育训练数据分析的准确性和效率 | 结合ID3决策树算法和深度学习模型,优化体育训练数据分析的性能 | 未提及具体的数据集规模或实际应用中的潜在问题 | 提高体育训练数据分析的准确性和效率,为运动员和教练提供决策支持 | 体育训练数据 | 机器学习 | NA | ID3决策树算法、深度学习 | ID3、XGBoost、CapsNets | 体育训练数据 | NA | NA | NA | NA | NA |
| 505 | 2025-05-03 |
Automated radiography assessment of ankle joint instability using deep learning
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99620-6
PMID:40301608
|
research paper | 本研究开发并评估了一种基于深度学习的系统,用于自动测量负重踝关节X光片中的距骨倾斜和前距骨平移,这些是诊断踝关节不稳定的关键参数 | 开发了一种深度学习系统,能够自动且高精度地测量踝关节X光片中的关键参数,为临床诊断提供客观和可重复的测量结果 | 排除了接受关节融合、骨移植或关节置换手术的患者,可能限制了系统的普适性 | 开发一种自动化系统以辅助临床诊断踝关节不稳定 | 踝关节X光片中的距骨倾斜和前距骨平移 | digital pathology | ankle joint instability | deep learning | DL-based system | image | 1,452张前后位X光片和2,984张侧位X光片,来自4,000名患者 | NA | NA | NA | NA |
| 506 | 2025-05-03 |
Brain tumor detection empowered with ensemble deep learning approaches from MRI scan images
2025-Apr-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-99576-7
PMID:40301625
|
research paper | 该研究提出了一种结合两种深度学习模型的新型AI技术,用于从MRI扫描图像中检测和分类脑肿瘤 | 结合InceptionV3和Xception两种深度学习模型,提高了脑肿瘤检测的准确性和可靠性 | 未提及具体的数据集大小或多样性限制 | 提高脑肿瘤检测的准确性和可靠性,以促进早期诊断和治疗 | 脑MRI扫描图像,分为垂体瘤、脑膜瘤、胶质瘤和正常四类 | digital pathology | brain tumor | MRI扫描 | InceptionV3 + Xception | image | NA | NA | NA | NA | NA |
| 507 | 2025-05-03 |
Application of deep learning reconstruction combined with time-resolved post-processing method to improve image quality in CTA derived from low-dose cerebral CT perfusion data
2025-Apr-29, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-025-01623-2
PMID:40301751
|
研究论文 | 评估深度学习重建(DLR)与时间分辨最大强度投影(tMIP)或时间分辨平均(tAve)后处理方法结合对低剂量脑CT灌注(CTP)数据衍生的CTA图像质量的影响 | 结合DLR与tMIP或tAve后处理方法,在降低辐射剂量的同时提升CTA图像质量 | 样本量较小(仅60例患者),且为回顾性研究 | 提升低剂量脑CTP衍生的CTA图像质量 | 低剂量脑CTP数据 | 医学影像处理 | 脑血管疾病 | 深度学习重建(DLR)、时间分辨最大强度投影(tMIP)、时间分辨平均(tAve) | 深度学习 | 医学影像(CT图像) | 60例患者(30例常规剂量组,30例低剂量组) | NA | NA | NA | NA |
| 508 | 2025-05-03 |
PPI-Graphomer: enhanced protein-protein affinity prediction using pretrained and graph transformer models
2025-Apr-29, BMC bioinformatics
IF:2.9Q1
DOI:10.1186/s12859-025-06123-2
PMID:40301762
|
研究论文 | 提出了一种名为PPI-Graphomer的模块,通过整合大规模语言模型和逆折叠模型的预训练特征,增强蛋白质结合界面的表征能力 | 结合预训练特征和分子相互作用信息,定义边关系和界面掩码,提升蛋白质结合界面的表征能力 | 未明确提及具体局限性 | 提高蛋白质-蛋白质亲和力预测的准确性 | 蛋白质-蛋白质相互作用(PPIs)及其结合界面 | 生物信息学 | NA | 预训练语言模型、逆折叠模型 | Graph Transformer | 蛋白质序列和结构数据 | 多个基准数据集(未明确提及具体数量) | NA | NA | NA | NA |
| 509 | 2025-05-03 |
LAGNet: better electron density prediction for LCAO-based data and drug-like substances
2025-Apr-29, Journal of cheminformatics
IF:7.1Q1
DOI:10.1186/s13321-025-01010-7
PMID:40301997
|
research paper | 该研究提出了一种名为LAGNet的新架构,用于预测基于LCAO数据的药物类物质的电子密度 | 提出了一种专门为药物类物质和DFT数据集设计和调整的新型架构LAGNet,并改进了电子密度的存储方式 | 未提及具体的局限性 | 提高基于LCAO数据的药物类物质电子密度预测的准确性 | 药物类物质的电子密度 | 量子化学 | NA | DeepDFT模型 | LAGNet | 量子化学数据 | 未提及具体样本量 | NA | NA | NA | NA |
| 510 | 2025-05-03 |
Unified Deep Learning of Molecular and Protein Language Representations with T5ProtChem
2025-Apr-28, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.5c00051
PMID:40197028
|
研究论文 | 介绍了一种基于T5架构的统一模型T5ProtChem,用于同时处理分子和蛋白质序列 | 提出了T5ProtChem模型,通过新的预训练目标ProtiSMILES,将分子和蛋白质领域连接起来,实现了高效的、可泛化的蛋白质-化学建模 | 未明确提及具体限制 | 探索统一的深度学习模型在药物发现、蛋白质工程以及计算生物学和化学的跨学科应用中的潜力 | 分子和蛋白质序列 | 计算生物学和化学 | NA | T5架构,ProtiSMILES预训练目标 | T5ProtChem | 分子和蛋白质序列 | 未明确提及样本数量 | NA | NA | NA | NA |
| 511 | 2025-05-03 |
Detection of precancerous lesions in cervical images of perimenopausal women using U-net deep learning
2025-Apr-23, African journal of reproductive health
IF:0.7Q4
DOI:10.29063/ajrh2025/v29i4.10
PMID:40314307
|
研究论文 | 本研究开发了一种基于U-Net和ResNet的高效准确宫颈细胞图像分割与识别模型,用于提高围绝经期女性癌前病变的检测 | 结合U-Net与SegNet,并引入SE注意力机制构建2Se/U-Net分割模型;优化ResNet,采用LD-loss和DRL块构建LD/ResNet病变识别模型 | 研究仅基于103张围绝经期女性的细胞学图像,样本量较小 | 提高围绝经期女性宫颈癌前病变的检测效率和准确性 | 围绝经期女性的宫颈细胞图像 | 数字病理学 | 宫颈癌 | 深度学习 | U-Net, ResNet, SegNet, SE注意力机制 | 图像 | 103张围绝经期女性的细胞学图像 | NA | NA | NA | NA |
| 512 | 2025-05-03 |
A Paradigm of Computer Vision and Deep Learning Empowers the Strain Screening and Bioprocess Detection
2025-Apr, Biotechnology and bioengineering
IF:3.5Q2
DOI:10.1002/bit.28926
PMID:39821114
|
研究论文 | 本研究提出并验证了一种结合计算机视觉与深度学习的创新研究范式,以促进高效菌株筛选和有效发酵过程优化 | 结合计算机视觉与深度学习,开发了一种用于菌株筛选和发酵过程优化的视觉传感研究范式 | NA | 提高菌株筛选和发酵过程优化的效率和稳定性 | 庆大霉素C1a效价和荧光蛋白表达 | 计算机视觉 | NA | 计算机视觉、深度学习 | 1D-CNN | 图像 | NA | NA | NA | NA | NA |
| 513 | 2025-05-03 |
DIFLF: A domain-invariant features learning framework for single-source domain generalization in mammogram classification
2025-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108592
PMID:39813937
|
研究论文 | 提出了一种用于乳腺X光片分类的单源域泛化的域不变特征学习框架(DIFLF) | 通过风格增强模块(SAM)和内容-风格解耦模块(CSDM)增加源域特征多样性并提取域不变特征 | 仅使用单一源数据集进行训练,可能无法覆盖所有可能的域偏移情况 | 提高深度学习模型在乳腺X光片分类中的跨域泛化能力 | 乳腺X光片 | 计算机视觉 | 乳腺癌 | 深度学习 | DIFLF(包含SAM和CSDM模块) | 图像 | 一个私有数据集(PRI1)用于训练,另一个私有数据集(PRI2)和两个公共数据集(INbreast和MIAS)用于测试 | NA | NA | NA | NA |
| 514 | 2025-05-03 |
Neurophysiological data augmentation for EEG-fNIRS multimodal features based on a denoising diffusion probabilistic model
2025-Apr, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108594
PMID:39813939
|
研究论文 | 提出了一种基于去噪扩散概率模型和高斯噪声添加的EEG-fNIRS数据增强框架,以提高混合脑机接口系统的性能 | 结合去噪扩散概率模型(DDPM)和传统高斯噪声添加方法,首次为EEG-fNIRS混合信号创建联合分布样本并进行数据增强 | 研究依赖于特定任务的数据集,可能无法直接推广到其他脑机接口应用场景 | 解决脑机接口系统中脑信号数据稀缺问题,提高深度学习模型性能 | EEG和fNIRS混合脑信号数据 | 脑机接口 | NA | 去噪扩散概率模型(DDPM),高斯噪声添加 | DDPM | EEG-fNIRS多模态神经生理信号 | 三个公开数据库和一个自采集数据库 | NA | NA | NA | NA |
| 515 | 2025-05-03 |
A comparative study of the EAT-Lancet diet and the Mediterranean diet in relation to neuroimaging biomarkers and cognitive performance
2025-Apr, Alzheimer's & dementia : the journal of the Alzheimer's Association
DOI:10.1002/alz.70191
PMID:40302043
|
research paper | 比较EAT-Lancet饮食与地中海饮食对老年人神经影像生物标志物和认知表现的影响 | 首次比较EAT-Lancet行星健康饮食与地中海饮食对大脑健康的影响 | 研究对象仅限于瑞典70岁无痴呆老年人,样本代表性有限 | 评估两种饮食模式对大脑健康和认知功能的影响 | 615名70岁无痴呆老年人 | 神经科学 | 阿尔茨海默病 | 神经影像测量(皮质厚度、海马体积、小血管疾病、深度学习脑年龄) | 深度学习 | 神经影像数据、认知评估数据 | 615名来自瑞典哥德堡H70出生队列研究的70岁老年人 | NA | NA | NA | NA |
| 516 | 2025-05-03 |
Reconstructing illusory camouflage patterns on moth wings using computer vision
2025-Apr, Journal of the Royal Society, Interface
DOI:10.1098/rsif.2024.0757
PMID:40304197
|
research paper | 利用计算机视觉技术重建蛾翅膀上的伪装图案,探索动物颜色图案如何利用深度感知机制产生错觉 | 首次利用先进的计算机视觉算法(如单图像单目深度估计)来重建动物颜色图案产生的潜在视觉错觉 | 研究仅针对六种蛾类物种,且深度感知模型的性能受限于自然世界的经验 | 探索动物颜色图案如何利用单目深度线索(如阴影)产生三维错觉,以实现伪装等功能 | 六种蛾类(鳞翅目)的翅膀图案 | computer vision | NA | intrinsic image decomposition, deep learning | Retinex-based model, deep-learning models | image | 六种蛾类物种的翅膀图案 | NA | NA | NA | NA |
| 517 | 2025-05-02 |
Improved Image Quality of Virtual Monochromatic Images with Deep Learning Image Reconstruction Algorithm on Dual-Energy CT in Patients with Pancreatic Ductal Adenocarcinoma
2025-Apr-30, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01514-6
PMID:40307592
|
研究论文 | 本研究旨在评估使用深度学习图像重建(DLIR)算法在双能CT(DECT)上重建的虚拟单色图像(VMIs)在胰腺导管腺癌(PDAC)诊断中的图像质量 | 首次在DECT上应用DLIR算法重建VMIs,显著提高了图像质量,特别是在低keV水平下 | 研究样本量较小(50例患者),且为回顾性分析 | 评估DLIR算法在DECT上重建VMIs的图像质量,以改善PDAC的诊断 | 50例经组织学确认的PDAC患者 | 数字病理 | 胰腺癌 | 双能CT(DECT) | 深度学习图像重建(DLIR) | 医学影像 | 50例PDAC患者 | NA | NA | NA | NA |
| 518 | 2025-05-01 |
Correction: Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: Plug‑in modules
2025-Apr-29, Knee surgery & related research
IF:4.1Q1
DOI:10.1186/s43019-025-00268-3
PMID:40302005
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 519 | 2025-05-02 |
Harnessing deep learning to monitor people's perceptions towards climate change on social media
2025-Apr-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-97441-1
PMID:40295576
|
研究论文 | 利用深度学习监测社交媒体上人们对气候变化的看法 | 提出了一种基于自然语言处理的可扩展方法框架,用于长期监测社交媒体用户对气候变化的看法和反应 | 研究仅针对西班牙、葡萄牙和英语的社交媒体帖子,可能无法代表全球范围内的观点 | 监测和分析社交媒体上人们对气候变化的看法,以支持基于数据的决策 | 社交媒体用户对气候变化的看法和反应 | 自然语言处理 | NA | 自然语言处理 | 深度学习 | 文本 | 1771千条来自西班牙、葡萄牙和英语的X/Twitter帖子 | NA | NA | NA | NA |
| 520 | 2025-05-02 |
SkinEHDLF a hybrid deep learning approach for accurate skin cancer classification in complex systems
2025-Apr-28, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-98205-7
PMID:40295588
|
research paper | 提出了一种名为SkinEHDLF的混合深度学习模型,用于提高皮肤癌分类的准确性 | 结合了ConvNeXt、EfficientNetV2和Swin Transformer的优势,并引入了自适应注意力特征融合机制 | 未提及具体局限性 | 提高皮肤癌分类的准确性和可靠性 | 皮肤病变图像 | computer vision | skin cancer | 深度学习 | ConvNeXt, EfficientNetV2, Swin Transformer | image | 401,059张皮肤病变图像 | NA | NA | NA | NA |