深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202504-202504] [清除筛选条件]
当前共找到 1461 篇文献,本页显示第 501 - 520 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
501 2025-05-06
Single Molecule Localization Super-resolution Dataset for Deep Learning with Paired Low-resolution Images
2025-Apr-23, Scientific data IF:5.8Q1
research paper 本文介绍了一个名为DL-SMLM的生物图像数据集,用于训练超分辨率模型,包含配对的低分辨率荧光图像和超分辨率SMLM数据 提供了一个公开的生物图像数据集,包含多种亚细胞结构的配对图像数据,支持深度学习超分辨率显微镜方法的发展 数据集虽然多样,但可能仍不足以覆盖所有类型的生物样本或结构 推动深度学习在超分辨率显微镜领域的应用 亚细胞结构,包括微管、内质网腔和膜、Clathrin包被小坑、线粒体外膜和内膜 digital pathology NA single molecule localization microscopy (SMLM) deep learning models image 188组原始SMLM数据,每种低分辨率图像有100个信号水平
502 2025-05-06
Continuous Reaching and Grasping with a BCI Controlled Robotic Arm in Healthy and Stroke-Affected Individuals
2025-Apr-19, medRxiv : the preprint server for health sciences
研究论文 本研究提出了一种基于运动想象的脑机接口(BCI)范式,用于控制机器人手臂进行连续抓取任务,并在健康人群和中风患者中进行了评估 通过引入额外的‘点击’信号,增加了BCI系统的自由度,实现了对机器人手臂的连续控制,而非从预定动作列表中选择 当前系统的应用受限于EEG信号的低信噪比和空间分辨率 探索非侵入式脑机接口在控制辅助设备(如机器人手臂)中的应用,特别是在复杂任务中的表现 健康受试者和中风幸存者 脑机接口 中风 EEG信号处理,深度学习 DL EEG信号 健康受试者和中风幸存者(具体数量未提及)
503 2025-05-06
Large-Scale Deep Learning-Enabled Infodemiological Analysis of Substance Use Patterns on Social Media: Insights From the COVID-19 Pandemic
2025-Apr-17, JMIR infodemiology IF:3.5Q1
研究论文 利用深度学习模型RoBERTa分析社交媒体数据,研究COVID-19大流行期间物质使用模式的变化 结合深度学习模型和人在回路策略,实时监测物质使用趋势,并识别关键影响因素 研究仅基于Twitter数据,可能无法全面代表所有人群的物质使用情况 分析COVID-19大流行期间物质使用模式的变化,为公共卫生干预提供依据 社交媒体上的物质使用相关帖子 自然语言处理 NA RoBERTa, 趋势分析, k-means聚类, 主题建模, 主题分析 RoBERTa 文本 11.3亿条Twitter帖子,其中900万条与物质使用相关
504 2025-05-06
Generating Artificial Patients With Reliable Clinical Characteristics Using a Geometry-Based Variational Autoencoder: Proof-of-Concept Feasibility Study
2025-Apr-17, Journal of medical Internet research IF:5.8Q1
研究论文 本研究探讨了使用基于几何的变分自编码器(VAE)生成具有可靠临床特征的人工患者的可行性 首次将基于几何的VAE应用于高维度、小样本量的表格数据,以生成人工患者 需要进一步研究整合纵向动态以映射患者轨迹 测试生成具有可靠临床特征的人工患者的可行性 521名真实患者的数据 机器学习 NA 变分自编码器(VAE) VAE 表格数据 521名真实患者的数据,生成多达10,000名人工患者
505 2025-05-06
A CT-based deep learning-driven tool for automatic liver tumor detection and delineation in patients with cancer
2025-Apr-15, Cell reports. Medicine
研究论文 介绍了一种基于CT扫描的深度学习工具SALSA,用于自动检测和描绘癌症患者的肝脏肿瘤 SALSA工具在肿瘤识别和体积量化方面表现出色,优于现有最先进模型和放射科专家之间的一致性 未提及具体局限性 开发一种自动化工具,用于癌症患者的肝脏肿瘤检测和描绘,以改善诊断、预后和治疗评估 肝脏肿瘤(原发性和转移性) 数字病理学 癌症 CT扫描 深度学习 图像 1,598例CT扫描和4,908个肝脏肿瘤
506 2025-05-06
AI analysis of medical images at scale as a health disparities probe: a feasibility demonstration using chest radiographs
2025-Apr-08, ArXiv
PMID:40297238
研究论文 本文探讨了利用医学影像数据作为健康差异研究新数据源的可行性 开发了一种从医学影像中自动提取定量指标并用于计算健康差异指数的流程 研究仅基于1,571例患者的胸部X光片,样本量有限 探索医学影像数据在健康差异研究中的应用潜力 1,571例患者的胸部X光片 数字病理学 NA 深度学习 深度学习模型 医学影像 1,571例患者
507 2025-05-06
Manifold Topological Deep Learning for Biomedical Data
2025-Apr-07, Research square
研究论文 本文首次提出流形拓扑深度学习(MTDL),将代数拓扑与深度神经网络结合,用于处理可微分流形上的数据,包括图像 首次将拓扑深度学习扩展到可微分流形数据,利用Hodge理论分解向量场并构建CNN输入 未明确提及具体局限性 开发适用于可微分流形数据的拓扑深度学习方法 可微分流形上的数据(包括图像) 机器学习 NA Hodge理论 CNN 图像 717,287张生物医学图像(来自11个2D和6个3D数据集)
508 2025-05-06
Fine extraction of multi-crop planting area based on deep learning with Sentinel- 2 time-series data
2025-Apr, Environmental science and pollution research international
研究论文 基于深度学习和Sentinel-2时间序列数据,提出了一种高效的多作物种植面积精细提取方法 设计了基于CNN-LSTM和Bi-LSTM的深度学习模型,结合月度合成的NDVI时间序列数据,实现了高精度的多作物分类 研究仅针对山东省的西北、西南和东部地区,可能在其他地区的适用性有待验证 为多作物分类提供一种基于高分辨率遥感时间序列数据的有效模型 山东省西北、西南和东部地区的多作物种植面积 计算机视觉 NA NDVI时间序列分析 CNN-LSTM, Bi-LSTM 遥感时间序列数据 山东省西北、西南和东部地区的多作物种植面积数据
509 2025-05-04
HoRNS-CNN model: an energy-efficient fully homomorphic residue number system convolutional neural network model for privacy-preserving classification of dyslexia neural-biomarkers
2025-Apr-30, Brain informatics
研究论文 介绍了一种名为HoRNS-CNN的能效高、全同态加密的卷积神经网络模型,用于保护隐私的阅读障碍神经生物标志物分类 结合了残数系统全同态加密方案(RNS-FHE)的能效特性和预训练深度CNN模型的高准确性,解决了现有FHE CNN模型在准确性、加密/解密延迟、能效、特征提取时间和密文图像扩展方面的问题 NA 开发一种能效高、隐私保护的深度学习模型,用于神经影像数据的分类 与阅读障碍相关的神经生物标志物 数字病理学 神经发育障碍 全同态加密(FHE), 残数系统(RNS) CNN 图像 NA
510 2025-05-04
Automatic melanoma and non-melanoma skin cancer diagnosis using advanced adaptive fine-tuned convolution neural networks
2025-Apr-30, Discover oncology IF:2.8Q2
research paper 提出了一种使用自适应微调卷积神经网络(CNN)的智能计算机辅助系统,用于自动诊断黑色素瘤和非黑色素瘤皮肤癌 采用两阶段迁移学习方法和预训练CNN,通过PCA替换全连接层以挖掘皮肤癌图像的判别性特征,有效缓解过拟合问题 训练数据有限,可能存在过拟合风险,且传统方法存在高计算成本和缺乏可解释性的问题 开发一种高效、准确的自动皮肤癌诊断系统,以辅助医疗专业人员进行早期筛查 皮肤癌图像 computer vision skin cancer deep learning, transfer learning, principal component analysis (PCA) CNN image NA
511 2025-05-04
Self-supervised learning for label-free segmentation in cardiac ultrasound
2025-Apr-30, Nature communications IF:14.7Q1
研究论文 本文提出了一种结合计算机视觉、临床知识和深度学习的自监督学习流程,用于心脏超声的无标签分割 开发了一种无需手动标注的自监督分割方法,其性能与监督学习相当,且具有临床有效性 虽然在大规模数据集上进行了测试,但部分结果的置信区间较宽,可能需要进一步验证 开发一种无需手动标注的心脏超声分割方法,提高分割效率和可重复性 心脏超声图像 计算机视觉 心血管疾病 深度学习 自监督学习 超声图像 450例超声心动图用于训练,18,423例用于测试(包括外部数据),其中553例有对应的心脏MRI
512 2025-05-04
Blockchain based solid waste classification with AI powered tracking and IoT integration
2025-Apr-30, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种结合AI、物联网和区块链技术的智能垃圾分类模型,旨在优化垃圾收集和回收过程 整合了AI、物联网和区块链技术,实现了实时垃圾分类和安全透明的数据存储 未提及具体性能评估结果和系统实际部署的可行性 通过智能决策和安全数据处理改善垃圾管理和可持续性 智能城市中的垃圾管理系统 机器学习 NA 机器学习和深度学习 ML和DL模型 物联网传感器数据 未提及具体样本数量
513 2025-05-04
A hybrid deep learning framework for early detection of diabetic retinopathy using retinal fundus images
2025-Apr-30, Scientific reports IF:3.8Q1
研究论文 提出了一种结合CNN和RNN的混合深度学习框架,用于通过视网膜眼底图像早期检测糖尿病视网膜病变 结合CNN和RNN,利用多时间点视网膜扫描的时间信息提高检测准确性,并引入注意力机制捕捉最相关的数据特征 未提及模型在临床环境中的实际应用效果验证 开发自动化的糖尿病视网膜病变早期检测系统 糖尿病视网膜病变患者 数字病理学 糖尿病视网膜病变 深度学习 CNN+RNN混合模型 视网膜眼底图像 使用了DRIVE、Kaggle和Eyepacs三个公开数据集
514 2025-05-04
Selective laser cleaning of microbeads using deep learning
2025-Apr-30, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合深度学习和飞秒激光技术的选择性激光清洁方法,用于高效、精确地去除表面污染物 通过集成神经网络预测每次激光脉冲后的样本外观,实现了自适应、实时的清洁过程,显著提高了清洁效率和精度 研究仅使用了直径为15微米的聚苯乙烯微珠作为污染物模型,可能无法完全代表所有实际应用场景中的污染物类型 开发一种高效、精确的选择性激光清洁方法,以减少能源消耗和基材损伤 聚苯乙烯微珠(直径15微米)作为表面污染物模型 机器视觉 NA 飞秒激光脉冲技术 神经网络 图像 使用聚苯乙烯微珠作为污染物模型,具体样本数量未提及
515 2025-05-04
A deep learning based framework for enhanced reference evapotranspiration estimation: evaluating accuracy and forecasting strategies
2025-Apr-30, Scientific reports IF:3.8Q1
研究论文 本文评估了三种深度学习序列模型(LSTM、N-BEATS和TCN)在预测日参考蒸散发(ET)中的性能,并进一步利用表现最佳的TCN模型评估了两种ET预测策略 首次比较了LSTM、N-BEATS和TCN三种深度学习模型在ET预测中的性能,并提出了递归策略以提高数据稀缺情况下的预测准确性 研究仅针对特定数据集进行评估,未考虑不同地理区域和气候条件下的模型泛化能力 开发高效准确的参考蒸散发预测方法以优化农业水资源管理 参考蒸散发(ET)的时间序列数据 机器学习 NA 深度学习时间序列预测 LSTM, N-BEATS, TCN 时间序列数据 未明确说明样本数量
516 2025-05-04
Targeted molecular generation with latent reinforcement learning
2025-Apr-30, Scientific reports IF:3.8Q1
research paper 提出了一种利用强化学习在预训练生成模型的潜在空间中优化分子的新方法 采用近端策略优化(PPO)在生成模型的潜在空间中导航,无需显式定义化学规则,且方法对底层架构不可知 NA 开发计算方法来生成具有特定理化性质或生物活性的分子,以辅助药物发现 分子生成与优化 machine learning NA reinforcement learning, proximal policy optimization (PPO) autoencoder molecular data NA
517 2025-05-04
Deep learning-based classification of coronary arteries and left ventricle using multimodal data for autonomous protocol selection or adjustment in angiography
2025-Apr-30, Scientific reports IF:3.8Q1
研究论文 该研究提出了一种基于深度学习的算法,用于自主检测冠状动脉和左心室,并调整血管造影中的成像参数 开发了一种多模态深度学习模型,能够在无血管结构的单X射线帧上准确分类心脏解剖结构,实现成像参数的自动选择和调整 研究仅使用了275个放射序列进行训练和验证,可能限制了模型的泛化能力 优化血管造影中的X射线成像参数选择,以提高图像质量并减少辐射暴露 左冠状动脉(LCA)、右冠状动脉(RCA)和左心室(LV) 计算机视觉 心血管疾病 深度学习 ResNet-50, MLP, 多模态模型 X射线图像和C臂角度数据 275个放射序列用于训练和验证,146个独立测试序列用于评估
518 2025-05-04
Evaluation of deliverable artificial intelligence-based automated volumetric arc radiation therapy planning for whole pelvic radiation in gynecologic cancer
2025-Apr-30, Scientific reports IF:3.8Q1
research paper 本研究旨在开发一种基于深度学习的可交付全盆腔容积弧形放射治疗(VMAT)计划,用于妇科癌症患者,并评估其临床有效性 使用名为RatoGuide的原型深度学习自动计划支持系统,预测并生成可交付的VMAT计划,减少医院间计划质量的差异 样本量较小(测试数据n=10),且仅在一家医院进行验证 开发并验证基于深度学习的自动化放射治疗计划系统在妇科癌症全盆腔VMAT中的临床适用性 妇科癌症患者 数字病理 妇科癌症 深度学习 DL-based三维剂量预测模型 剂量分布和结构数据 110名妇科癌症患者(训练数据n=100,测试数据n=10)
519 2025-05-04
Improving the accuracy of prediction models for small datasets of Cytochrome P450 inhibition with deep learning
2025-Apr-30, Journal of cheminformatics IF:7.1Q1
研究论文 本研究探讨了深度学习技术在预测细胞色素P450(CYP)抑制中的应用,特别是在CYP2B6和CYP2C8亚型数据有限的情况下 利用多任务深度学习和数据填补技术显著提高了CYP抑制预测的准确性,尤其是在小数据集条件下 研究主要针对CYP2B6和CYP2C8亚型,可能不适用于所有CYP亚型 提高CYP抑制预测模型的准确性,特别是在小数据集条件下 细胞色素P450(CYP)抑制,特别是CYP2B6和CYP2C8亚型 机器学习 NA 深度学习,数据填补 图卷积网络(GCN),多任务学习模型 化合物IC50值 12,369种针对7种CYP亚型的化合物,1,808种已批准药物
520 2025-05-04
MSRP-TODNet: a multi-scale reinforced region wise analyser for tiny object detection
2025-Apr-30, BMC research notes IF:1.6Q2
研究论文 提出了一种名为MSRP-TODNet的多尺度强化区域分析器,用于微小物体检测 结合了多智能体强化学习算法和生成对抗网络,通过改进的特征金字塔网络整合特征图,提高了微小物体检测的准确性和实时性 仅在特定数据集(VisDrone VID 2019和MS-COCO)上进行了训练和测试,可能在其他场景下的泛化能力有限 解决实时监控中小型远距离物体检测的挑战,提高检测性能 无人机监控和航空影像中的微小物体 计算机视觉 NA 多智能体强化学习(MARL)、生成对抗网络(GAN) MSRP-TODNet(基于GAN和EFPN) 图像 VisDrone VID 2019和MS-COCO数据集
回到顶部