深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202504-202504] [清除筛选条件]
当前共找到 1386 篇文献,本页显示第 521 - 540 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
521 2025-05-03
Unified Deep Learning of Molecular and Protein Language Representations with T5ProtChem
2025-Apr-28, Journal of chemical information and modeling IF:5.6Q1
研究论文 介绍了一种基于T5架构的统一模型T5ProtChem,用于同时处理分子和蛋白质序列 提出了T5ProtChem模型,通过新的预训练目标ProtiSMILES,将分子和蛋白质领域连接起来,实现了高效的、可泛化的蛋白质-化学建模 未明确提及具体限制 探索统一的深度学习模型在药物发现、蛋白质工程以及计算生物学和化学的跨学科应用中的潜力 分子和蛋白质序列 计算生物学和化学 NA T5架构,ProtiSMILES预训练目标 T5ProtChem 分子和蛋白质序列 未明确提及样本数量 NA NA NA NA
522 2025-05-03
Detection of precancerous lesions in cervical images of perimenopausal women using U-net deep learning
2025-Apr-23, African journal of reproductive health IF:0.7Q4
研究论文 本研究开发了一种基于U-Net和ResNet的高效准确宫颈细胞图像分割与识别模型,用于提高围绝经期女性癌前病变的检测 结合U-Net与SegNet,并引入SE注意力机制构建2Se/U-Net分割模型;优化ResNet,采用LD-loss和DRL块构建LD/ResNet病变识别模型 研究仅基于103张围绝经期女性的细胞学图像,样本量较小 提高围绝经期女性宫颈癌前病变的检测效率和准确性 围绝经期女性的宫颈细胞图像 数字病理学 宫颈癌 深度学习 U-Net, ResNet, SegNet, SE注意力机制 图像 103张围绝经期女性的细胞学图像 NA NA NA NA
523 2025-05-03
A Paradigm of Computer Vision and Deep Learning Empowers the Strain Screening and Bioprocess Detection
2025-Apr, Biotechnology and bioengineering IF:3.5Q2
研究论文 本研究提出并验证了一种结合计算机视觉与深度学习的创新研究范式,以促进高效菌株筛选和有效发酵过程优化 结合计算机视觉与深度学习,开发了一种用于菌株筛选和发酵过程优化的视觉传感研究范式 NA 提高菌株筛选和发酵过程优化的效率和稳定性 庆大霉素C1a效价和荧光蛋白表达 计算机视觉 NA 计算机视觉、深度学习 1D-CNN 图像 NA NA NA NA NA
524 2025-05-03
DIFLF: A domain-invariant features learning framework for single-source domain generalization in mammogram classification
2025-Apr, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出了一种用于乳腺X光片分类的单源域泛化的域不变特征学习框架(DIFLF) 通过风格增强模块(SAM)和内容-风格解耦模块(CSDM)增加源域特征多样性并提取域不变特征 仅使用单一源数据集进行训练,可能无法覆盖所有可能的域偏移情况 提高深度学习模型在乳腺X光片分类中的跨域泛化能力 乳腺X光片 计算机视觉 乳腺癌 深度学习 DIFLF(包含SAM和CSDM模块) 图像 一个私有数据集(PRI1)用于训练,另一个私有数据集(PRI2)和两个公共数据集(INbreast和MIAS)用于测试 NA NA NA NA
525 2025-05-03
Neurophysiological data augmentation for EEG-fNIRS multimodal features based on a denoising diffusion probabilistic model
2025-Apr, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出了一种基于去噪扩散概率模型和高斯噪声添加的EEG-fNIRS数据增强框架,以提高混合脑机接口系统的性能 结合去噪扩散概率模型(DDPM)和传统高斯噪声添加方法,首次为EEG-fNIRS混合信号创建联合分布样本并进行数据增强 研究依赖于特定任务的数据集,可能无法直接推广到其他脑机接口应用场景 解决脑机接口系统中脑信号数据稀缺问题,提高深度学习模型性能 EEG和fNIRS混合脑信号数据 脑机接口 NA 去噪扩散概率模型(DDPM),高斯噪声添加 DDPM EEG-fNIRS多模态神经生理信号 三个公开数据库和一个自采集数据库 NA NA NA NA
526 2025-05-03
A comparative study of the EAT-Lancet diet and the Mediterranean diet in relation to neuroimaging biomarkers and cognitive performance
2025-Apr, Alzheimer's & dementia : the journal of the Alzheimer's Association
research paper 比较EAT-Lancet饮食与地中海饮食对老年人神经影像生物标志物和认知表现的影响 首次比较EAT-Lancet行星健康饮食与地中海饮食对大脑健康的影响 研究对象仅限于瑞典70岁无痴呆老年人,样本代表性有限 评估两种饮食模式对大脑健康和认知功能的影响 615名70岁无痴呆老年人 神经科学 阿尔茨海默病 神经影像测量(皮质厚度、海马体积、小血管疾病、深度学习脑年龄) 深度学习 神经影像数据、认知评估数据 615名来自瑞典哥德堡H70出生队列研究的70岁老年人 NA NA NA NA
527 2025-05-03
Reconstructing illusory camouflage patterns on moth wings using computer vision
2025-Apr, Journal of the Royal Society, Interface
research paper 利用计算机视觉技术重建蛾翅膀上的伪装图案,探索动物颜色图案如何利用深度感知机制产生错觉 首次利用先进的计算机视觉算法(如单图像单目深度估计)来重建动物颜色图案产生的潜在视觉错觉 研究仅针对六种蛾类物种,且深度感知模型的性能受限于自然世界的经验 探索动物颜色图案如何利用单目深度线索(如阴影)产生三维错觉,以实现伪装等功能 六种蛾类(鳞翅目)的翅膀图案 computer vision NA intrinsic image decomposition, deep learning Retinex-based model, deep-learning models image 六种蛾类物种的翅膀图案 NA NA NA NA
528 2025-05-02
Improved Image Quality of Virtual Monochromatic Images with Deep Learning Image Reconstruction Algorithm on Dual-Energy CT in Patients with Pancreatic Ductal Adenocarcinoma
2025-Apr-30, Journal of imaging informatics in medicine
研究论文 本研究旨在评估使用深度学习图像重建(DLIR)算法在双能CT(DECT)上重建的虚拟单色图像(VMIs)在胰腺导管腺癌(PDAC)诊断中的图像质量 首次在DECT上应用DLIR算法重建VMIs,显著提高了图像质量,特别是在低keV水平下 研究样本量较小(50例患者),且为回顾性分析 评估DLIR算法在DECT上重建VMIs的图像质量,以改善PDAC的诊断 50例经组织学确认的PDAC患者 数字病理 胰腺癌 双能CT(DECT) 深度学习图像重建(DLIR) 医学影像 50例PDAC患者 NA NA NA NA
529 2025-05-01
Correction: Accurate, automated classification of radiographic knee osteoarthritis severity using a novel method of deep learning: Plug‑in modules
2025-Apr-29, Knee surgery & related research IF:4.1Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
530 2025-05-02
Harnessing deep learning to monitor people's perceptions towards climate change on social media
2025-Apr-28, Scientific reports IF:3.8Q1
研究论文 利用深度学习监测社交媒体上人们对气候变化的看法 提出了一种基于自然语言处理的可扩展方法框架,用于长期监测社交媒体用户对气候变化的看法和反应 研究仅针对西班牙、葡萄牙和英语的社交媒体帖子,可能无法代表全球范围内的观点 监测和分析社交媒体上人们对气候变化的看法,以支持基于数据的决策 社交媒体用户对气候变化的看法和反应 自然语言处理 NA 自然语言处理 深度学习 文本 1771千条来自西班牙、葡萄牙和英语的X/Twitter帖子 NA NA NA NA
531 2025-05-02
SkinEHDLF a hybrid deep learning approach for accurate skin cancer classification in complex systems
2025-Apr-28, Scientific reports IF:3.8Q1
research paper 提出了一种名为SkinEHDLF的混合深度学习模型,用于提高皮肤癌分类的准确性 结合了ConvNeXt、EfficientNetV2和Swin Transformer的优势,并引入了自适应注意力特征融合机制 未提及具体局限性 提高皮肤癌分类的准确性和可靠性 皮肤病变图像 computer vision skin cancer 深度学习 ConvNeXt, EfficientNetV2, Swin Transformer image 401,059张皮肤病变图像 NA NA NA NA
532 2025-05-02
Optimizing photovoltaic integration in grid management via a deep learning-based scenario analysis
2025-Apr-28, Scientific reports IF:3.8Q1
research paper 该研究开发了一种结合深度学习技术的双阶段优化模型,以解决光伏系统并入电网的挑战 利用生成对抗网络(GANs)模拟多样化和高分辨率的能源生成-消耗模式,并通过实时自适应控制框架进行动态调整,显著提升电网效率和稳定性 未提及具体的地理或气候条件限制,可能影响模型的普适性 优化光伏系统在电网管理中的集成,提高经济与环境效益 光伏系统与电网的集成管理 machine learning NA GANs GAN 能源生成与消耗数据 NA NA NA NA NA
533 2025-05-02
Impact of fine-tuning parameters of convolutional neural network for skin cancer detection
2025-Apr-28, Scientific reports IF:3.8Q1
research paper 该研究探讨了卷积神经网络(CNN)参数微调对皮肤癌检测性能的影响 通过调整CNN的层数、Conv2D层的滤波器数量及去除dropout层,显著提高了分类器的准确率,从62.5%提升至85% 研究未涉及其他类型的深度学习模型或更广泛的数据集验证 优化CNN参数以提高皮肤癌图像数据集的分类准确率 皮肤癌图像数据集 computer vision skin cancer NA CNN image NA NA NA NA NA
534 2025-05-02
Research on noninvasive electrophysiologic imaging based on cardiac electrophysiology simulation and deep learning methods for the inverse problem
2025-Apr-28, BMC cardiovascular disorders IF:2.0Q3
研究论文 本研究结合心脏电生理模拟和深度学习方法,为非侵入性心脏电生理成像(ECGI)的实现提供了新方案 结合三维双域心脏电生理活动模型与深度学习算法(包括粒子群优化-反向传播神经网络、CNN和LSTM)来重建心脏表面电位 未提及实际临床应用中的潜在限制或样本多样性问题 开发非侵入性心脏电生理成像技术以改善心律失常的诊断和治疗 心脏电活动及体表电位映射 数字病理 心血管疾病 心脏电生理模拟、深度学习 粒子群优化-BP神经网络、CNN、LSTM 模拟心电图数据 NA NA NA NA NA
535 2025-05-02
Intermittent hypoxemia during hemodialysis: AI-based identification of arterial oxygen saturation saw-tooth pattern
2025-Apr-28, BMC nephrology IF:2.2Q2
研究论文 利用人工智能技术自动识别血液透析患者中重复出现的间歇性动脉血氧饱和度锯齿模式 首次应用一维卷积神经网络(1D-CNN)对血液透析过程中的SaO2锯齿模式进行实时分类 研究样本量较小(仅22名患者),且仅针对特定血管通路(动静脉瘘)患者 开发自动识别血液透析患者间歇性低氧血症的人工智能系统 维持性血液透析患者的动脉血氧饱和度(SaO2)数据 数字病理学 心血管疾病 Crit-Line设备连续监测 1D-CNN 时间序列数据 22名患者的89次血液透析治疗中的4075个5分钟片段 NA NA NA NA
536 2025-05-02
Deep learning-based tennis match type clustering
2025-Apr-28, BMC sports science, medicine & rehabilitation
研究论文 本研究旨在基于比赛方式定义和聚类网球比赛类型 首次使用深度学习模型对网球比赛类型进行聚类分析,并识别出四种不同的比赛类型 样本量较小,仅包含2023年国际网球公开赛五场决赛的32场比赛 聚类网球比赛类型并为每种类型制定比赛策略 2023年国际网球公开赛五场决赛的32场比赛 机器学习 NA 深度学习 三种未指定具体名称的聚类模型 比赛记录数据 32场比赛 NA NA NA NA
537 2025-05-02
Publisher Correction: The intelligent fault identification method based on multi-source information fusion and deep learning
2025-Apr-28, Scientific reports IF:3.8Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
538 2025-05-02
18F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma
2025-Apr-28, BMC medical imaging IF:2.9Q2
research paper 开发并验证基于18F-FDG PET/CT图像的深度学习和传统临床代谢模型,用于无创预测侵袭性肺腺癌的高级别模式 结合深度学习和临床代谢参数构建预测模型,并通过列线图可视化 样本量较小且为回顾性研究,可能影响模型的泛化能力 预测侵袭性肺腺癌的高级别模式 303名侵袭性肺腺癌患者 digital pathology lung cancer 18F-FDG PET/CT DL (deep learning), logistic regression image (PET/CT) 303名患者,按7:1:2比例分为训练集、验证集和测试集 NA NA NA NA
539 2025-05-02
DTC-m6Am: A Framework for Recognizing N6,2'-O-dimethyladenosine Sites in Unbalanced Classification Patterns Based on DenseNet and Attention Mechanisms
2025-Apr-24, Frontiers in bioscience (Landmark edition)
研究论文 提出了一种基于DenseNet和注意力机制的深度学习模型DTC-m6Am,用于识别RNA中的N6,2'-O-二甲基腺苷(m6Am)位点 结合DenseNet和TCN模块提取局部和全局特征,并引入CBAM注意力机制优化特征提取,使用焦点损失函数解决数据不平衡问题 未明确说明模型在更广泛RNA序列上的泛化能力 开发高效的计算工具预测m6Am位点,以研究其在转录和转录后水平的功能机制 RNA中的m6Am修饰位点 生物信息学 NA One-Hot编码,深度学习 DenseNet, TCN, CBAM RNA序列数据 未明确说明样本数量 NA NA NA NA
540 2025-05-02
Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis
2025-Apr-23, BMC cardiovascular disorders IF:2.0Q3
meta-analysis 比较机器学习模型与传统统计方法在预测经皮冠状动脉介入治疗(PCI)结果中的性能 首次系统比较机器学习模型与逻辑回归模型在预测PCI后多种结果中的表现,并进行荟萃分析 大多数研究存在高偏倚风险,机器学习模型解释复杂可能影响临床应用的适应性 评估机器学习模型相比传统统计方法在预测PCI后结果中的优势 经皮冠状动脉介入治疗(PCI)后的死亡率、主要不良心脏事件(MACE)、院内出血和急性肾损伤(AKI) machine learning cardiovascular disease NA ML vs. logistic regression clinical data 59项研究 NA NA NA NA
回到顶部