本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
581 | 2025-04-08 |
Deep learning prediction of mammographic breast density using screening data
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95275-5
PMID:40185813
|
研究论文 | 本研究探讨了使用深度学习模型对乳腺密度进行客观评估的方法 | 采用深度学习模型InceptionV3对乳腺密度进行四分类预测,并证明其优于放射科医生的准确性和一致性 | 放射科医生在脂肪和分散类别上表现优于模型,但模型在高密度类别上表现更优 | 开发一种客观评估乳腺密度的深度学习工具 | 乳腺X线摄影图像 | 计算机视觉 | 乳腺癌 | 深度学习 | InceptionV3 | 图像 | 9,621名女性的57,282张乳腺X线摄影图像 |
582 | 2025-04-08 |
Parallel boosting neural network with mutual information for day-ahead solar irradiance forecasting
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95891-1
PMID:40185800
|
research paper | 提出了一种新颖的并行提升神经网络框架(PBNN),用于日前太阳辐照度预测,结合了提升算法和前馈神经网络 | 提出了一种新的并行提升神经网络框架(PBNN),结合了三种提升决策树算法(XgBoost、CatBoost和RF回归器)作为基础学习器,并通过前馈神经网络(FFNN)分配最优权重以生成最终预测 | 虽然PBNN在性能上有所提升,但其计算复杂度可能仍然较高,且依赖于特征选择算法的准确性 | 提高日前太阳辐照度预测的准确性,以支持光伏系统的可靠运行 | 太阳辐照度数据 | machine learning | NA | 并行提升神经网络(PBNN)、互信息(MI)算法 | PBNN、XgBoost、CatBoost、RF、FFNN | 太阳辐照度数据 | 两个地理数据集(伊斯兰堡和圣地亚哥) |
583 | 2025-04-08 |
Improved deep learning model for accurate energy demand prediction and conservation in electric vehicles integrated with cognitive radio networks
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-94650-6
PMID:40185809
|
research paper | 提出了一种改进的深度学习模型,用于准确预测电动汽车与认知无线电网络整合中的能源需求并实现节能 | 结合经验模态分解、CNN和海鸥优化算法(EMD-CNN-SOA),提高了能源需求预测的准确性 | 未提及具体的数据集来源或实验环境限制 | 解决电动汽车能源需求预测和节能问题,减轻电网负担并降低充电成本 | 电动汽车和认知无线电网络 | machine learning | NA | Empirical Mode Decomposition, Seagull Optimization Algorithm | EMD-CNN-SOA, CNN, LSTM, RNN | NA | NA |
584 | 2025-04-08 |
Accurate cross-species 5mC detection for Oxford Nanopore sequencing in plants with DeepPlant
2025-Apr-04, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-58576-x
PMID:40185832
|
research paper | 开发了一个名为DeepPlant的深度学习模型,用于提高植物中5mC检测的准确性,特别是在CHH位点 | 结合Bi-LSTM和Transformer架构,显著提高了CHH检测的准确性,并在CpG和CHG基序上表现良好 | 缺乏高甲基化阳性样本的稀缺性限制了CHH甲基化检测的泛化能力 | 提高植物中5mC检测的准确性,特别是在CHH位点 | 植物中的5mC甲基化 | machine learning | NA | Oxford Nanopore sequencing, bisulfite-sequencing | Bi-LSTM, Transformer | sequencing data | nine species |
585 | 2025-04-08 |
A performance-driven hybrid text-image classification model for multimodal data
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-95674-8
PMID:40185890
|
research paper | 本文提出了一种结合文本和图像处理的混合模型HTIC,用于多模态数据的分类任务 | HTIC模型采用复杂的深度学习架构,结合VGG16进行图像分类和Roberta与MYSQL进行文本分类,通过多模态特征提取层确保不同类型数据的兼容性 | 未明确提及具体局限性 | 提高多模态数据分类的准确性、可解释性和应用性 | 多模态数据(文本和图像) | machine learning | NA | 深度学习、多模态特征提取 | HTIC(混合文本图像分类模型)、VGG16、Roberta、CNN | 文本、图像 | 五个不同的数据集(包括NFT数据集) |
586 | 2025-04-08 |
The analysis of optimization in music aesthetic education under artificial intelligence
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96436-2
PMID:40185937
|
research paper | 探讨人工智能环境下深度学习技术在音乐审美教育中的优化应用 | 结合AI和深度学习算法,提出具有更高准确性的音乐情感识别方法,为音乐审美教育提供新方向 | 未提及具体实验样本的多样性和规模,可能影响结果的普遍性 | 优化音乐审美教育方法,探索AI时代音乐教育的新发展方向 | 不同年龄段和音乐素养水平的学生 | machine learning | NA | deep learning | NA | NA | NA |
587 | 2025-04-08 |
Wild horseshoe crab image denoising based on CNN-transformer architecture
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96218-w
PMID:40185943
|
research paper | 提出了一种基于CNN-Transformer混合架构的野马马蹄蟹图像去噪方法 | 结合多头转置注意力机制、门控机制和深度可分离卷积,优化了野马马蹄蟹图像的去噪质量 | 未提及模型在极端噪声条件下的表现 | 提高野马马蹄蟹图像的去噪效果,以支持其追踪与定位 | 野马马蹄蟹的图像 | computer vision | NA | CNN-Transformer混合模型 | CNN, ViT | image | 未明确提及样本数量 |
588 | 2025-04-08 |
Tunnel face rock mass class rapid identification based on TBM cutterhead vibration monitoring and deep learning model
2025-Apr-04, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96875-x
PMID:40186002
|
研究论文 | 基于TBM刀盘振动监测和深度学习模型,开发了一种端到端的隧道工作面岩体等级快速识别方法 | 结合1DCNN、BiLSTM和自注意力机制的优势,提出了一种新的深度学习模型,能够自动提取信号中的时空域特征,无需中断正常掘进过程即可快速识别岩体等级 | 缺乏对长隧道段连续振动记录的获取,且对TBM刀盘振动监测的研究较少 | 优化TBM操作参数和选择后续隧道支护措施 | TBM隧道工作面的岩体条件 | 机器学习 | NA | 深度学习 | 1DCNN, BiLSTM, 自注意力机制 | 振动信号 | NA |
589 | 2025-04-08 |
Multimodal depression recognition and analysis: Facial expression and body posture changes via emotional stimuli
2025-Apr-03, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.03.155
PMID:40187420
|
research paper | 本研究开发了一种结合面部表情和身体姿势的多模态识别模型,用于抑郁症的快速初步筛查 | 结合面部表情和身体姿势变化,利用深度学习技术开发端到端多模态识别模型,提高抑郁症检测效率 | 样本量相对较小(146名受试者),可能影响模型的泛化能力 | 通过分析情绪刺激下的面部表情和身体姿势变化,提高抑郁症的早期识别效率 | 抑郁症患者和健康对照组(各73名) | digital pathology | geriatric disease | 深度学习技术、OpenFace序列分析 | ResNet-50、决策级融合模型 | 视频图像(面部表情和身体姿势) | 146名受试者(73名抑郁症患者和73名健康对照组) |
590 | 2025-04-08 |
Deep-learning-assisted medium optimization improves hyaluronic acid production by Streptococcus zooepidemicus
2025-Apr-03, Journal of bioscience and bioengineering
IF:2.3Q3
DOI:10.1016/j.jbiosc.2025.03.001
PMID:40189954
|
研究论文 | 利用深度学习算法优化培养基,提高兽疫链球菌生产透明质酸的效率 | 采用深度学习算法优化培养基成分,显著提高了透明质酸的生产效率 | 未提及实验是否在其他菌株或条件下验证过 | 提高兽疫链球菌生产透明质酸的效率 | 兽疫链球菌 | 机器学习 | NA | 深度学习 | DL | 实验数据 | 初始训练数据集OA01-18,54种候选优化培养基OM01-54 |
591 | 2025-04-08 |
Compact Model Training by Low-Rank Projection With Energy Transfer
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3400928
PMID:38843062
|
研究论文 | 提出了一种名为LRPET的新训练方法,用于从头开始训练低秩压缩网络,并实现竞争性性能 | 通过交替执行随机梯度下降训练和权重矩阵的低秩流形投影,并结合能量转移和BN校正,提高了低秩压缩网络的性能 | 未明确提及具体限制,但可能包括对特定网络架构的依赖或计算资源需求 | 开发一种高效的深度神经网络低秩压缩方法 | 深度神经网络 | 机器学习 | NA | 低秩投影与能量转移(LRPET) | CNN, Transformer | 图像 | CIFAR-10和ImageNet数据集 |
592 | 2025-04-08 |
Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration
2025-Apr, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2024.3386809
PMID:38722728
|
研究论文 | 提出了一种监督辅助的自监督深度学习方法,用于高光谱图像(HSI)的恢复 | 结合监督学习和自监督学习,引入噪声自适应损失函数,利用噪声退化HSI的内部统计信息进行恢复 | 未明确提及具体限制,但可能面临复杂噪声场景下的泛化能力挑战 | 解决高光谱图像恢复中的分布差距和噪声干扰问题 | 高光谱图像(HSI) | 计算机视觉 | NA | 深度学习 | 监督辅助的自监督深度学习网络 | 高光谱图像 | 未明确提及具体样本数量,但使用了大量训练数据集 |
593 | 2025-04-08 |
Prior Visual-Guided Self-Supervised Learning Enables Color Vignetting Correction for High-Throughput Microscopic Imaging
2025-Apr, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2024.3471907
PMID:39412976
|
研究论文 | 本文提出了一种自监督深度学习算法VCLUT,用于校正彩色显微图像中的复杂渐晕效应 | 利用显微图像同质性和渐晕径向衰减特性开发自监督算法,具有跨不同渐晕强度泛化能力和超快计算特性 | 未明确说明算法在极端光照条件下的表现 | 开发适用于高通量显微成像的鲁棒渐晕校正方法 | 彩色显微图像中的渐晕效应 | 数字病理学 | NA | 自监督深度学习 | 对抗生成网络(GAN) | 显微图像 | 五种不同生物标本数据+病理学数据集 |
594 | 2025-04-08 |
Air quality index prediction with optimisation enabled deep learning model in IoT application
2025-Apr, Environmental technology
IF:2.2Q3
DOI:10.1080/09593330.2024.2409993
PMID:39467096
|
研究论文 | 本文开发了一种基于物联网(IoT)和深度学习(DL)的技术,用于预测空气质量指数(AQI) | 提出了Tangent Two-Stage Algorithm (TTSA)用于路由机制,以及Fractional Tangent Two-Stage Optimisation (FTTSA)用于深度前馈神经网络(DFNN)的训练过程 | 未提及具体的数据来源或样本量,可能影响模型的泛化能力 | 预测空气质量指数(AQI)以应对工业化和城市化带来的空气污染问题 | 空气质量指数(AQI)及其相关环境因素 | 机器学习 | NA | 深度学习、物联网(IoT)、Z-score标准化、特征指标提取 | 深度前馈神经网络(DFNN) | 时间序列数据 | NA |
595 | 2025-04-08 |
Detection of Macular Neovascularization in Eyes Presenting with Macular Edema using OCT Angiography and a Deep Learning Model
2025-Apr, Ophthalmology. Retina
DOI:10.1016/j.oret.2024.10.017
PMID:39461425
|
research paper | 研究使用OCT血管成像和深度学习模型检测黄斑水肿患者中的黄斑新生血管 | 开发了一种新型的混合多任务卷积神经网络(aiMNV),用于检测和分割黄斑新生血管(MNV),在多种病因导致的黄斑水肿中表现出高准确率 | 6×6-mm扫描的MNV检测灵敏度低于3×3-mm扫描,由于扫描采样密度较低 | 测试人工智能算法在使用OCT和OCT血管成像检测和分割黄斑新生血管(MNV)方面的诊断性能 | 因初治渗出性年龄相关性黄斑变性(AMD)、糖尿病性黄斑水肿(DME)或视网膜静脉阻塞(RVO)导致黄斑水肿的患者 | digital pathology | age-related macular degeneration | OCT angiography (OCTA) | hybrid multitask convolutional neural network (aiMNV) | image | 114只眼(来自112名研究参与者),其中56只眼有渗出性AMD导致的MNV,58只眼有DME或RVO导致的黄斑水肿 |
596 | 2025-04-08 |
Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17580
PMID:39699250
|
研究论文 | 本研究探讨了利用患者特异性自动分割方法改进腹部癌症患者在分次磁共振引导放疗中的自动分割效果 | 提出了基于患者特异性数据的自动分割模型,通过整合治疗计划和先前分次的MR图像,优化了分次治疗中的自动分割效果 | 研究样本量有限(151名患者),且仅针对特定类型的腹部癌症 | 改进分次磁共振引导放疗中的自动分割方法,以减少手动轮廓校正的时间消耗 | 腹部癌症患者的分次磁共振引导放疗数据 | 数字病理 | 腹部癌症 | 磁共振成像(MRI) | 深度学习自动分割模型 | 图像 | 151名腹部癌症患者的151份计划MR图像和215份分次MR图像 |
597 | 2025-04-08 |
Deep learning-aided diagnosis of acute abdominal aortic dissection by ultrasound images
2025-Apr, Emergency radiology
IF:1.7Q3
DOI:10.1007/s10140-025-02311-y
PMID:39821588
|
research paper | 研究探讨了深度学习在超声图像中诊断急性腹主动脉夹层的能力 | 使用深度学习模型(Densenet-169和VGG-16)辅助诊断急性腹主动脉夹层,并与人类读者进行比较 | 样本量较小(374张超声图像),且仅使用了两种深度学习模型 | 提高急性腹主动脉夹层的早期诊断准确率,特别是在急诊环境中 | 急性腹主动脉夹层(AD)患者的超声图像 | digital pathology | cardiovascular disease | ultrasound imaging | Densenet-169, VGG-16 | image | 374张超声图像(90%训练集,10%测试集) |
598 | 2025-04-08 |
Impact of deep learning reconstructions on image quality and liver lesion detectability in dual-energy CT: An anthropomorphic phantom study
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17651
PMID:39887750
|
research paper | 评估深度学习图像重建(DLIR)在双能CT(DECT)中对图像质量和肝血管性病变检测的影响 | 首次在DECT中使用DLIR算法评估其对肝血管性病变检测的影响,并与传统重建方法进行比较 | 研究基于人体模型,未涉及真实患者数据,可能无法完全反映临床情况 | 评估DLIR在DECT中对图像质量和肝血管性病变检测的影响 | 模拟的肝血管性肝细胞癌(HCC)病变 | digital pathology | liver cancer | dual-energy CT (DECT), deep learning image reconstruction (DLIR) | DLIR | CT image | 一个人体模型(BMI为23 kg/m²),包含模拟的肝血管性病变 |
599 | 2025-04-08 |
Fast In Vivo Two-Photon Fluorescence Imaging via Lateral and Axial Resolution Restoration With Self-Supervised Learning
2025-Apr, Journal of biophotonics
IF:2.0Q3
DOI:10.1002/jbio.202400489
PMID:39909559
|
research paper | 提出了一种基于自监督学习的横向和轴向分辨率恢复(LARR)深度学习框架,以解决双光子荧光(TPF)成像中分辨率与速度之间的矛盾 | 开发了LARR框架,通过自监督训练方案计算恢复稀疏采样的TPF图像,实现4倍轴向和16倍横向分辨率增强 | 未提及具体局限性 | 解决双光子荧光成像中高分辨率与高速度之间的矛盾 | 双光子荧光(TPF)成像系统 | computer vision | NA | 双光子荧光(TPF)成像 | 自监督学习框架 | 图像 | 未提及具体样本数量 |
600 | 2025-04-08 |
Novel pre-spatial data fusion deep learning approach for multimodal volumetric outcome prediction models in radiotherapy
2025-Apr, Medical physics
IF:3.2Q1
DOI:10.1002/mp.17672
PMID:39928034
|
研究论文 | 提出了一种新颖的预空间数据融合深度学习方法,用于放射治疗中的多模态体积结果预测模型 | 提出了一种名为联合早期预空间(JEPS)融合的新技术,解决了多模态模型输入中结构不兼容的问题 | 研究样本量相对较小(222例),且性能提升在统计上不显著 | 提高放射治疗前总体生存期(OS)预测的准确性 | 头颈部癌症患者 | 数字病理学 | 头颈部癌症 | 3D CNN, 数据融合技术 | 3D CNN, Cox Proportional Hazards模型, 密集神经网络 | CT影像, 剂量数组, 结构集, 表格数据 | 222例头颈部癌症患者 |