本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61 | 2025-07-20 |
New Threshold for Defining Mild Aortic Stenosis Derived From Velocity-Encoded MRI in 60,000 Individuals
2025-Apr-08, Journal of the American College of Cardiology
IF:21.7Q1
DOI:10.1016/j.jacc.2025.01.035
PMID:40175013
|
研究论文 | 本研究通过深度学习模型测量主动脉瓣功能,提出了新的轻度主动脉瓣狭窄(AS)定义标准,并在大规模人群中验证了其与不良预后的关联 | 首次在大规模人群(62,902名UK Biobank参与者)中使用深度学习模型测量主动脉瓣功能,提出了新的轻度AS定义标准('mild ASproposed'),并在外部临床队列(NEDA,365,870人)中验证了该标准与不良预后的关联 | 研究随访时间相对较短(平均3.9年),且主要基于影像学数据,缺乏长期临床结局的全面评估 | 探索主动脉瓣功能的流行病学特征,建立新的轻度AS诊断标准 | UK Biobank参与者(n=62,902)和NEDA临床队列(n=365,870) | 心血管影像学 | 心血管疾病 | 速度编码心脏磁共振成像(velocity-encoded cardiac MRI) | 深度学习模型 | 医学影像数据 | UK Biobank(62,902人,其中健康亚组41,859人)和NEDA(365,870人) |
62 | 2025-07-20 |
Tumor Bud Classification in Colorectal Cancer Using Attention-Based Deep Multiple Instance Learning and Domain-Specific Foundation Models
2025-Apr-07, Cancers
IF:4.5Q1
DOI:10.3390/cancers17071245
PMID:40227783
|
研究论文 | 本文提出了一种基于注意力机制的深度多实例学习和领域特定基础模型的自动系统,用于结直肠癌中的肿瘤芽分类 | 采用注意力机制的多实例学习和领域特定基础模型,提高了肿瘤芽分类的准确性和可解释性 | 数据集相对较小,仅包含29张训练WSIs和70张测试WSIs | 提高结直肠癌中肿瘤芽的自动分类准确性,以改善预后评估 | 结直肠癌中的肿瘤芽 | 数字病理 | 结直肠癌 | 深度学习 | ABMIL(基于注意力的多实例学习) | 全切片图像(WSIs) | 29张训练WSIs和70张测试WSIs |
63 | 2025-07-20 |
Towards contrast-agnostic soft segmentation of the spinal cord
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103473
PMID:39874684
|
research paper | 提出一种深度学习方法,用于生成跨MRI对比度稳定的脊髓软分割 | 使用软分割和回归损失函数减少CSA变异性,并提高模型在未见数据集、供应商、对比度和病理情况下的泛化能力 | 研究主要基于健康参与者的数据,对于病理情况的泛化能力仍需进一步验证 | 开发一种对比度无关的脊髓分割方法,以减少多中心研究中CSA的变异性 | 脊髓 | digital pathology | neurodegenerative diseases | MRI | U-Net | image | 267名健康参与者,6种对比度 |
64 | 2025-07-20 |
Deep learning informed multimodal fusion of radiology and pathology to predict outcomes in HPV-associated oropharyngeal squamous cell carcinoma
2025-Apr, EBioMedicine
IF:9.7Q1
DOI:10.1016/j.ebiom.2025.105663
PMID:40121941
|
研究论文 | 本研究开发了一种基于深度学习的多模态融合方法SMuRF,用于预测HPV相关口咽鳞状细胞癌的预后 | 首次整合了放射学和病理学的多区域数据,利用跨模态和跨区域的窗口多头自注意力机制捕捉肿瘤栖息地和图像尺度间的特征交互 | 研究仅针对HPV相关的OPSCC患者,样本量为277例,可能限制了结果的普适性 | 预测HPV相关口咽鳞状细胞癌的生存率和肿瘤分级 | HPV相关口咽鳞状细胞癌患者 | 数字病理学 | 头颈癌 | 深度学习 | swintransformer-based multimodal and multi-region data fusion framework (SMuRF) | CT图像和全切片病理图像 | 277例匹配放射学和病理学图像的OPSCC患者 |
65 | 2025-07-20 |
Quantitative molecular imaging using deep magnetic resonance fingerprinting
2025-Apr-01, Nature protocols
IF:13.1Q1
DOI:10.1038/s41596-025-01152-w
PMID:40169753
|
研究论文 | 本文介绍了一种基于深度学习的饱和转移磁共振指纹图谱(MRF)方法,用于蛋白质、代谢物和pH值的无创体内成像 | 深度MRF提供了一个定量且快速的框架,用于提取具有生物学和临床意义的分子信息,解决了传统方法的复杂性和长扫描时间问题 | 该方法的完成时间从48分钟到57小时不等,可能在某些临床应用中显得较长 | 开发一种定量分子MRI的完整协议,用于癌症监测、脑髓鞘成像和pH值量化等应用 | 体外样本、动物和人类扫描 | 数字病理学 | 癌症、神经退行性疾病、中风和心脏病 | 化学交换饱和转移(CEST)和半固体磁化转移(MT)定量成像 | 深度学习模型 | 图像 | 未明确说明具体样本数量,但涉及体外样本、动物和人类扫描 |
66 | 2025-07-17 |
Emerging frontiers in protein structure prediction following the AlphaFold revolution
2025-Apr, Journal of the Royal Society, Interface
DOI:10.1098/rsif.2024.0886
PMID:40233800
|
综述 | 本文探讨了深度学习驱动的蛋白质结构预测工具(如AlphaFold)的最新进展及其在高级应用中的应用 | 聚焦于AlphaFold革命后蛋白质结构预测的前沿应用,并提出了报告AlphaFold预测的指南 | 未涉及蛋白质动态行为及其与其他生物分子相互作用的具体实验验证 | 推动蛋白质结构预测工具在生物学、化学和计算机科学交叉领域的应用 | 蛋白质结构及其与其他生物分子的相互作用 | 生物信息学 | NA | 深度学习 | AlphaFold | 蛋白质结构数据 | 数百万个蛋白质结构模型 |
67 | 2025-07-16 |
Trends and Gaps in Public Perception of Genetic Testing for Dementia Risk: Unsupervised Deep Learning of Twitter Posts From 2010 to 2023
2025 Apr-Jun 01, Alzheimer disease and associated disorders
DOI:10.1097/WAD.0000000000000667
PMID:40371554
|
研究论文 | 本研究利用Twitter数据分析了公众对痴呆症基因检测的看法 | 使用BERT模型和主题建模技术分析Twitter数据,揭示公众对痴呆症基因检测的看法和趋势 | 研究仅基于英语推文,可能无法代表全球公众的全面看法 | 分析公众对痴呆症基因检测的看法和趋势 | 2010年至2023年间包含相关术语的英语推文 | 自然语言处理 | 老年疾病 | BERT模型, NER, 主题建模 | BERT | 文本 | 3045条原始/源推文 |
68 | 2025-07-15 |
A Novel Technique for Fluorescence Lifetime Tomography
2025-Apr-16, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.19.613888
PMID:39345436
|
研究论文 | 提出了一种基于深度神经网络的荧光寿命层析成像新技术AUTO-FLI,用于在深层组织中实现3D强度和定量寿命重建 | 开发了名为AUTO-FLI的深度学习模型,能够在厘米深度实现高散射介质中的3D定量荧光寿命成像 | 目前仅在模拟小鼠体模上进行实验验证,尚未在真实生物组织中进行广泛测试 | 解决深层组织中荧光寿命3D成像的技术挑战 | 高散射介质中的荧光寿命成像 | 生物医学成像 | NA | 荧光寿命成像(FLIM) | 深度神经网络(DL) | 3D成像数据 | 解剖学精确的小鼠模拟体模 |
69 | 2025-07-15 |
All-at-once RNA folding with 3D motif prediction framed by evolutionary information
2025-Apr-08, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.17.628809
PMID:39764046
|
research paper | 介绍了一种名为CaCoFold-R3D的概率语法模型,用于联合预测RNA的3D结构和二级结构 | CaCoFold-R3D利用RNA比对中的进化信息可靠地识别规范螺旋(包括假结),并引入了R3D语法,利用螺旋共变约束大部分非共变的RNA 3D模块的定位 | NA | 开发一种能够预测RNA 3D结构和二级结构的联合概率语法模型 | RNA的3D结构和二级结构 | computational biology | NA | probabilistic grammar, evolutionary information | CaCoFold-R3D | RNA sequence and alignment | over fifty known RNA motifs |
70 | 2025-07-12 |
Artificial Intelligence in Biliopancreatic Disorders: Applications in Cross-Sectional Imaging and Endoscopy
2025-Apr-29, Gastroenterology
IF:25.7Q1
DOI:10.1053/j.gastro.2025.04.011
PMID:40311821
|
综述 | 本文探讨了人工智能在胆胰疾病诊断和管理中的变革潜力 | 利用深度学习和卷积神经网络等尖端技术,AI在胃肠病学领域,尤其是内窥镜手术中取得了显著进展 | 早期研究结果尚需进一步验证,未来方向有待探索 | 总结AI在胆胰疾病中的应用现状,为未来研究方向铺路 | 胆胰疾病 | 数字病理学 | 胆胰疾病 | 深度学习、卷积神经网络 | CNN | 图像 | NA |
71 | 2025-07-12 |
Machine Listening for OSA Diagnosis: A Bayesian Meta-Analysis
2025-Apr-11, Chest
IF:9.5Q1
DOI:10.1016/j.chest.2025.04.006
PMID:40220991
|
meta-analysis | 通过贝叶斯元分析评估机器学习在阻塞性睡眠呼吸暂停(OSA)诊断中的准确性 | 首次使用贝叶斯元分析方法评估基于音频记录的机器学习模型在OSA诊断中的表现,并优化了诊断参数 | 研究仅基于现有文献,未进行新的实验验证 | 评估和优化机器学习在OSA诊断中的准确性 | 阻塞性睡眠呼吸暂停(OSA)患者 | machine learning | 阻塞性睡眠呼吸暂停(OSA) | Bayesian bivariate meta-analysis, meta-regression | deep learning, traditional machine learning | audio recordings | 训练集4,864名参与者,测试集2,370名参与者 |
72 | 2025-07-11 |
Memorization Bias Impacts Modeling of Alternative Conformational States of Symmetric Solute Carrier Membrane Proteins with Methods from Deep Learning
2025-Apr-26, bioRxiv : the preprint server for biology
DOI:10.1101/2024.07.15.603529
PMID:39071413
|
研究论文 | 本文探讨了AlphaFold在模拟蛋白质动态结构时的记忆偏差问题,并提出了一种结合ESM和基于模板建模的方法来模拟SLC蛋白的多种构象状态 | 提出了一种结合ESM和基于模板建模的方法,能够克服记忆偏差,一致性地模拟SLC蛋白的多种构象状态 | 方法可能仍受限于某些SLC蛋白的特定构象状态记忆偏差 | 评估记忆偏差对SLC蛋白构象状态建模的影响,并提出改进方法 | SLC超家族膜蛋白的多种构象状态 | 机器学习 | NA | AlphaFold2, AlphaFold3, Evolutionary Scale Modeling (ESM), 基于模板的建模 | AlphaFold, ESM | 蛋白质序列和结构数据 | 多个整合膜蛋白转运体,包括SLC35F2 |
73 | 2025-07-11 |
TOWARDS PATIENT-SPECIFIC SURGICAL PLANNING FOR BICUSPID AORTIC VALVE REPAIR: FULLY AUTOMATED SEGMENTATION OF THE AORTIC VALVE IN 4D CT
2025-Apr, Proceedings. IEEE International Symposium on Biomedical Imaging
DOI:10.1109/ISBI60581.2025.10981269
PMID:40630832
|
研究论文 | 本文开发了一种基于nnU-Net的全自动多标签二叶式主动脉瓣分割流程,用于手术规划 | 首次提出针对二叶式主动脉瓣的全自动分割方法,并评估了分割结果的临床可用性 | 分割结果的时间一致性需要改进 | 开发患者特异性手术规划工具,用于二叶式主动脉瓣修复 | 二叶式主动脉瓣 | 数字病理学 | 心血管疾病 | 4D CT | nnU-Net | 4D CT图像 | 未明确说明样本数量 |
74 | 2025-07-10 |
A comprehensive benchmark for multiple highly efficient base editors with broad targeting scope
2025-Apr-25, bioRxiv : the preprint server for biology
DOI:10.1101/2024.12.17.628899
PMID:39763781
|
研究论文 | 本文构建了一套包含10种腺嘌呤和胞嘧啶碱基编辑器(BEs)的工具集,并全面评估了它们的编辑特性,利用深度学习模型BEEP预测编辑效率,并验证了3558个疾病相关单核苷酸变异(SNVs)的安装 | 构建了包含10种高效BEs的工具集,开发了深度学习模型BEEP预测编辑效率,并验证了大量疾病相关SNVs的安装,包括传统认为不可编辑的靶点 | 未明确提及具体局限性,但可能涉及模型预测的准确性和实验验证的覆盖范围 | 评估和优化碱基编辑器的性能,以更高效地编辑基因组中的特定靶点 | 腺嘌呤和胞嘧啶碱基编辑器(BEs)及其在基因组编辑中的应用 | 基因组编辑 | NA | 碱基编辑(Base Editing),深度学习 | BEEP(Base Editing Efficiency Predictor) | 基因组数据 | 34,040 BE-gRNA-target组合,3,558个疾病相关SNVs,1,752,651个ClinVar SNVs |
75 | 2025-07-10 |
Long-term care plan recommendation for older adults with disabilities: a bipartite graph transformer and self-supervised approach
2025-04-01, Journal of the American Medical Informatics Association : JAMIA
IF:4.7Q1
DOI:10.1093/jamia/ocae327
PMID:39883541
|
research paper | 本研究提出了一种基于二分图Transformer和自监督学习的方法,为残疾老年人推荐长期护理计划 | 提出了一种新颖的二分图Transformer架构,结合特征向量中心性增强节点特征,并利用图结构信息作为自注意力机制的参考 | 模型在常见护理项目上表现优异,但在罕见或复杂服务上的性能有待进一步提高 | 利用深度学习方法为残疾老年人推荐全面的护理计划 | 残疾老年人 | machine learning | geriatric disease | graph self-supervised learning (SSL) | Bipartite Graph Transformer (BiT) | graph data | 1917个节点和195240条边,源自真实护理数据 |
76 | 2025-07-10 |
Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study
2025-Apr, Yonsei medical journal
IF:2.6Q1
DOI:10.3349/ymj.2024.0050
PMID:40134084
|
研究论文 | 评估基于深度学习的计算机辅助诊断(DL-CAD)在冠状动脉钙化评分CT中检测肺结节的可行性和效用 | 首次在冠状动脉钙化评分CT中应用DL-CAD系统辅助检测肺结节,显著提高了初级读片医生的敏感性 | 样本量较小(273例患者),且为回顾性研究 | 探索DL-CAD在冠状动脉钙化评分CT中检测肺结节的应用价值 | 273例接受冠状动脉钙化评分CT检查的患者 | 数字病理 | 肺癌 | CT扫描 | DL-CAD(基于深度学习的计算机辅助诊断系统) | 医学影像(CT图像) | 273例患者(129名男性,平均年龄63.9±13.2岁),共检测到269个结节 |
77 | 2025-07-08 |
Deep learning-based organ-at-risk segmentation, registration and dosimetry on cone beam computed tomography images in radiation therapy: A comprehensive review
2025-Apr-01, Journal of cancer research and therapeutics
IF:1.4Q4
DOI:10.4103/jcrt.jcrt_2006_24
PMID:40616533
|
综述 | 本文综述了基于深度学习的锥形束计算机断层扫描(CBCT)在放射治疗中器官风险分割、图像配准和剂量学的应用进展 | 探讨了生成对抗网络(GAN)和深度卷积神经网络(DCNN)在提高CBCT图像质量、器官风险分割精度和剂量计算准确性方面的创新应用 | 未提及具体的技术实施细节或临床验证的局限性 | 提升CBCT在放射治疗中的应用效果,包括器官风险分割、图像配准和剂量计算的准确性 | 锥形束计算机断层扫描(CBCT)图像及其在放射治疗中的应用 | 数字病理学 | NA | 生成对抗网络(GAN)、深度卷积神经网络(DCNN) | GAN、DCNN | 图像 | NA |
78 | 2025-07-08 |
Precision prediction of cervical cancer outcomes: A machine learning approach to recurrence and survival analysis
2025-Apr-01, Journal of cancer research and therapeutics
IF:1.4Q4
DOI:10.4103/jcrt.jcrt_2524_24
PMID:40616534
|
综述 | 本文全面探讨了AI在预测宫颈癌复发和生存中的作用,重点关注机器学习、深度学习和自然语言处理等技术 | 整合AI与医学影像、基因组学和临床数据,为宫颈癌复发和生存预测提供先进方法 | 讨论了AI在宫颈癌预测中的挑战和局限性 | 优化宫颈癌治疗并改善患者预后 | 宫颈癌患者 | 机器学习 | 宫颈癌 | 机器学习、深度学习、自然语言处理 | NA | 医学影像、基因组学、临床数据 | NA |
79 | 2025-07-07 |
Comparison of Deep Learning Approaches Using Chest Radiographs for Predicting Clinical Deterioration: Retrospective Observational Study
2025-Apr-10, JMIR AI
DOI:10.2196/67144
PMID:40605772
|
研究论文 | 本研究比较了使用胸部X光片的深度学习模型在预测临床恶化方面的效果 | 首次比较了多种计算机视觉模型和数据增强方法在预测临床恶化方面的性能,并验证了胸部X光片在此任务中的潜在价值 | 研究为回顾性观察研究,可能存在选择偏倚;仅考虑了48小时内获取的胸部X光片 | 比较和验证不同计算机视觉模型和数据增强方法在预测临床恶化方面的性能 | 住院患者的胸部X光片 | 计算机视觉 | 呼吸系统疾病 | 深度学习 | VGG16, DenseNet121, Vision Transformer, ResNet50, Inception V3 | 图像 | 21,817例住院患者(其中1,655例出现临床恶化) |
80 | 2025-07-07 |
Greenspace and depression incidence in the US-based nationwide Nurses' Health Study II: A deep learning analysis of street-view imagery
2025-Apr, Environment international
IF:10.3Q1
DOI:10.1016/j.envint.2025.109429
PMID:40209395
|
研究论文 | 本研究利用深度学习分析街景图像,探讨了美国女性中绿地暴露与抑郁症发病率之间的关系 | 首次使用街景图像而非卫星植被指数来测量绿地暴露,减少了暴露分类错误并提高了政策相关性 | 研究仅针对美国女性护士群体,结果可能无法推广到其他人群 | 探究街景绿地指标与抑郁症发病率之间的关联 | 美国护士健康研究II的33,490名参与者 | 计算机视觉 | 抑郁症 | 深度学习分割模型 | CNN | 图像 | 3.5亿张美国街景图像(2007-2020年),33,490名护士健康研究II参与者 |