深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202504-202504] [清除筛选条件]
当前共找到 1131 篇文献,本页显示第 1101 - 1120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1101 2025-02-10
On the analysis of adapting deep learning methods to hyperspectral imaging. Use case for WEEE recycling and dataset
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本文评估了在深度学习架构中结合不同空间和光谱特征对高光谱图像分割的影响,并探讨了从RGB图像预训练模型到高光谱领域的知识迁移 提出了不同架构配置,评估了光谱和空间信息对模型性能、能耗和推理时间的影响,并公开了Tecnalia WEEE高光谱数据集 未对所有光谱波长进行优化,且从RGB领域迁移的预训练模型性能较低、能耗较高、推理时间较长 研究高光谱图像分割中空间和光谱信息对深度学习模型性能的影响 高光谱图像 计算机视觉 NA 深度学习 深度学习架构 高光谱图像 Tecnalia WEEE高光谱数据集,包含铜、黄铜、铝、不锈钢和白铜等非铁金属废料
1102 2025-02-10
Rapid identification of horse oil adulteration based on deep learning infrared spectroscopy detection method
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究提出了一种基于深度学习和红外光谱技术的快速检测马油掺假的方法 首次将红外光谱与深度学习结合用于马油掺假的快速检测,展示了深度学习与红外光谱在掺假检测领域结合的重要性 研究中仅使用了四种类型的样本(马油、黄油、羊油和猪油)进行掺假检测,可能无法涵盖所有可能的掺假物质 建立一种快速识别马油掺假的方法,以应对市场上马油掺假问题 马油及其掺假样本(黄油、羊油、猪油) 机器学习 NA 红外光谱技术 ResNet 红外光谱数据 四种类型的样本(马油、黄油、羊油、猪油),每种掺假比例(5%, 10%, 20%, 30%, 40%, 50%)
1103 2025-02-10
Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究评估了超分辨率深度学习重建(SR-DLR)在提高薄层3D T2加权成像(T2WI)图像质量和前列腺影像报告与数据系统(PI-RADS)评估中的有效性 使用SR-DLR技术在不延长MRI采集时间的情况下提高图像质量,并评估其对PI-RADS评分的影响 样本量较小(28名患者),且为回顾性研究 评估SR-DLR在提高前列腺MRI图像质量和PI-RADS评分中的有效性 前列腺MRI图像 医学影像 前列腺癌 超分辨率深度学习重建(SR-DLR) 深度学习模型 MRI图像 28名男性患者(年龄范围:47-88岁;平均年龄:70.8岁)
1104 2025-02-10
A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本文提出了一种基于轻量级自适应空间通道注意力EfficientNet B3的生成对抗网络(ASCA-EffNet GAN),用于从欠采样的k空间数据中快速高质量地重建MR图像 提出了一种结合自适应空间通道注意力机制和EfficientNet B3的生成对抗网络,用于MR图像重建,有效捕捉空间和通道特征,提升重建质量 未提及具体的数据集大小和多样性,可能影响模型的泛化能力 加速MR图像采集并提高重建质量,适用于临床快速诊断 欠采样的k空间数据 计算机视觉 NA 压缩感知MRI(CS-MRI) 生成对抗网络(GAN),U-net生成器,ResNet解码器 MR图像 未提及具体样本数量
1105 2025-02-10
Conditional generative diffusion deep learning for accelerated diffusion tensor and kurtosis imaging
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究开发了DiffDL,一种生成扩散概率模型,旨在从减少的扩散加权图像(DWI)集中生成高质量的扩散张量成像(DTI)和扩散峰度成像(DKI)指标 DiffDL模型通过生成扩散概率模型解决了扩散MRI数据采集时间过长的问题,同时保持了指标的准确性 未来研究需要优化计算需求,并在临床队列和标准MRI扫描仪上验证模型 开发一种生成扩散概率模型以减少扩散MRI数据采集时间并保持指标准确性 扩散加权图像(DWI) 计算机视觉 NA 扩散张量成像(DTI)和扩散峰度成像(DKI) UNet 图像 300训练/验证对象和50测试对象
1106 2025-02-10
Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究开发了一种基于多参数MRI的深度学习模型,用于预测乳腺癌的分子亚型 使用五种类型的术前MRI图像,通过集成学习方法融合五个基础模型的输出,构建了一个多参数MRI模型,用于预测乳腺癌的分子亚型 研究样本量相对较小,且为回顾性研究,可能存在选择偏差 开发一种基于多参数MRI的模型,用于预测乳腺癌的分子亚型 325例经病理证实的乳腺癌患者的临床数据和五种MRI图像 数字病理 乳腺癌 多参数MRI成像 ResNeXt50 图像 325例乳腺癌患者(260例训练集,65例测试集)
1107 2024-12-28
Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究评估了基于深度学习的加速心脏电影MRI在对比剂注射前后的等效性,用于评估心室功能 首次在临床环境中评估了对比剂注射前后基于深度学习的加速心脏电影MRI的图像质量和心室功能量化等效性 样本量较小,仅30名患者,且仅在1.5T扫描仪上进行 评估对比剂注射前后基于深度学习的加速心脏电影MRI在图像质量和心室功能量化上的等效性 30名患者(20名男性,平均年龄53.7±17.8岁) 医学影像 心血管疾病 心脏磁共振成像(MRI) 深度学习 图像 30名患者
1108 2025-01-02
Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究探讨了深度学习放射组学列线图(DLRN)在预测脑胶质瘤IDH基因型中的可行性 开发了一种结合深度学习特征、放射组学特征和临床特征的混合模型,用于非侵入性预测胶质瘤的IDH突变状态 研究样本量相对较小,且仅基于T2图像进行预测 探索DLRN在预测脑胶质瘤IDH基因型中的可行性 402名来自两个独立中心的脑胶质瘤患者 数字病理学 脑胶质瘤 深度学习,放射组学 混合模型(深度学习特征、放射组学特征、临床特征) 图像(T2图像) 402名脑胶质瘤患者(训练队列239名,内部验证队列103名,外部验证队列60名)
1109 2025-02-10
Comparison of conventional diffusion-weighted imaging and multiplexed sensitivity-encoding combined with deep learning-based reconstruction in breast magnetic resonance imaging
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究比较了传统扩散加权成像(DWI)与结合深度学习的多重灵敏度编码(MUSE-DLR)在乳腺磁共振成像中的应用 首次将深度学习重建技术应用于MUSE数据,以提升乳腺MRI图像质量 样本量较小,仅包括51名女性参与者 评估MUSE结合深度学习重建在乳腺成像中的可行性 接受乳腺磁共振成像的女性参与者 医学影像 乳腺癌 磁共振成像(MRI),扩散加权成像(DWI),多重灵敏度编码(MUSE) 深度学习重建(DLR) 图像 51名女性参与者
1110 2025-01-11
Application of MRI-based tumor heterogeneity analysis for identification and pathologic staging of breast phyllodes tumors
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本文探讨了基于MRI的影像组学和深度学习模型在乳腺叶状肿瘤识别和分类中的应用价值 结合传统影像组学特征、亚区域影像组学特征和深度学习特征,构建了融合模型,并验证了其在乳腺叶状肿瘤分类中的最佳诊断效能和临床效益 研究样本量较小(77例),且为回顾性分析,可能存在选择偏倚 探索MRI影像组学和深度学习在乳腺叶状肿瘤识别和病理分期中的应用价值 乳腺叶状肿瘤和纤维腺瘤患者 数字病理 乳腺癌 MRI成像 融合模型(传统影像组学、亚区域影像组学和深度学习) MRI图像 77例经病理检查确诊的乳腺叶状肿瘤和纤维腺瘤患者
1111 2025-01-14
Cooking loss estimation of semispinalis capitis muscle of pork butt using a deep neural network on hyperspectral data
2025-Apr, Meat science IF:5.7Q1
研究论文 本研究评估了基于深度学习的模型在预测猪颈肉半棘肌烹饪损失方面的性能,使用了死后24小时采集的高光谱图像 使用深度学习模型和高光谱图像预测猪颈肉半棘肌的烹饪损失,并通过数据增强克服小样本问题 分类准确率随着等级数量的增加而降低 预测猪颈肉半棘肌的烹饪损失 猪颈肉半棘肌 计算机视觉 NA 高光谱成像 深度学习模型 图像 70个猪颈肉样本
1112 2025-02-10
Deep learning-based free-water correction for single-shell diffusion MRI
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本文提出了一种基于深度学习的单壳扩散MRI自由水校正方法,旨在提高扩散特性的准确估计 提出了一种深度学习框架,用于映射和校正DWI中的自由水部分体积污染,适用于单壳采集方案 需要进一步验证在不同临床数据集上的通用性和稳定性 提高扩散MRI中自由水校正的准确性,特别是在单壳采集方案中 Human Connectome Project Young Adults (HCP-ya)、HCP Aging dataset (HCP-a) 以及 Brain Tumor Connectomics Data (BTC) 医学影像处理 NA 扩散磁共振成像 (dMRI) 深度学习模型 MRI图像 HCP-ya、HCP-a 和 BTC 数据集
1113 2025-02-10
FDuDoCLNet: Fully dual-domain contrastive learning network for parallel MRI reconstruction
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本文提出了一种新的全双域对比学习网络(FDuDoCLNet),用于并行MRI重建,以解决现有深度学习方法在重建质量上的局限性 提出了基于变分网络(VarNet)的全双域对比学习网络(FDuDoCLNet),通过引入双域对比损失来优化重建性能,并在图像域和小波域中同时进行加速并行成像(PI) 现有重建网络很少考虑小波域中的多样化频率特征,且现有双域重建方法可能过于关注单一域的特征,导致重建图像中关键全局结构或局部细节的丢失 提高并行MRI重建的速度和质量 MRI图像 计算机视觉 NA 深度学习 FDuDoCLNet, VarNet 图像 fastMRI多线圈膝盖数据集
1114 2025-02-08
Using deep learning for ultrasound images to diagnose chronic lateral ankle instability with high accuracy
2025-Apr, Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology
研究论文 本研究旨在通过深度学习技术,利用超声图像对慢性外侧踝关节不稳(CLAI)进行高精度诊断 首次将深度学习应用于超声图像,用于慢性外侧踝关节不稳的诊断,并展示了高准确率和AUC值 样本量较小,仅包括60个踝关节(30个对照组和30个损伤组) 计算慢性外侧踝关节不稳的诊断准确率 慢性外侧踝关节不稳患者和无踝关节扭伤史的对照组 计算机视觉 踝关节疾病 深度学习 预训练深度学习模型 超声图像 60个踝关节(30个对照组和30个损伤组),共4000张图像
1115 2025-02-07
FedPD: Defending federated prototype learning against backdoor attacks
2025-Apr, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为FedPD的框架,旨在防御联邦学习中的后门攻击 FedPD框架通过交换原型而非模型参数,有效防止恶意客户端在联邦学习训练中植入后门通道,显著减少通信开销 现有防御方法在训练或测试阶段需要大量计算和通信开销,限制了其在资源受限场景中的实用性,且不适用于一般联邦学习场景中的非独立同分布数据 防御联邦学习中的后门攻击 联邦学习中的客户端和服务器 机器学习 NA 联邦学习 深度学习模型 NA NA
1116 2025-02-07
Enhancing consistency and mitigating bias: A data replay approach for incremental learning
2025-Apr, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种新的数据回放方法,通过量化数据一致性并开发新的损失函数来减少不一致性,同时引入正则化项以平衡类别权重,从而在类增量学习中提高性能 提出了一种新的损失函数,通过最小化KL散度来减少倒置数据与真实数据之间的不一致性,并引入正则化项以平衡类别权重 该方法依赖于对倒置数据与真实数据之间一致性的简化假设,可能在实际应用中存在局限性 解决深度学习系统在序列任务学习中的灾难性遗忘问题 深度学习系统在类增量学习中的性能 机器学习 NA 数据回放方法 NA 图像数据 CIFAR-100, Tiny-ImageNet, 和 ImageNet100 数据集
1117 2025-02-07
MPIC: Exploring alternative approach to standard convolution in deep neural networks
2025-Apr, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文探讨了深度神经网络中标准卷积的替代方法,提出了多尺度渐进推理卷积(MPIC),旨在增强特征提取能力同时保持相似的参数数量 提出了MPIC,结合了大感受野、多尺度处理和渐进推理的优点,显著提升了特征提取能力并保持了计算效率 未提及具体局限性 探索标准卷积的替代方法,以增强特征提取能力 深度神经网络中的卷积操作 计算机视觉 NA NA CNN 图像 多个知名数据集
1118 2025-02-07
DFCL: Dual-pathway fusion contrastive learning for blind single-image visible watermark removal
2025-Apr, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种双路径融合对比学习方法,用于盲单图像可见水印去除 通过双路径训练图像和梯度图,增强高频特征获取和水印空间定位的准确性,并通过对比学习确保结果更接近原始无水印图像 未提及具体局限性 解决盲单图像可见水印去除中的水印检测准确性和去除后视觉质量问题 数字图像 计算机视觉 NA 深度学习 对比学习 图像 三个具有挑战性的基准数据集
1119 2025-02-07
ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism
2025-Apr, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为ICH-PRNet的跨模态网络,用于预测脑出血(ICH)的预后结果 提出了一种联合注意力交互编码器,有效整合了计算机断层扫描图像和临床文本,并定义了一个多损失函数来优化跨模态融合能力 现有跨模态方法在提取互补信息和跨模态特征方面存在不足,限制了其预后能力 提高脑出血预后预测的准确性 脑出血患者 计算机视觉 脑出血 深度学习 ICH-PRNet 图像、文本 内部和公开数据集
1120 2025-02-07
A Fine-grained Hemispheric Asymmetry Network for accurate and interpretable EEG-based emotion classification
2025-Apr, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种细粒度半球不对称网络(FG-HANet),用于基于原始EEG数据的准确且可解释的情绪分类 FG-HANet利用2-Hz窄频带内的半球不对称特征,通过端到端深度学习模型进行情绪分类,并采用三阶段训练流程以增强性能 NA 提高基于EEG数据的情绪分类的准确性和可解释性 原始EEG数据 机器学习 NA 有限脉冲响应(FIR)滤波器 FG-HANet EEG数据 两个公共数据集SEED和SEED-IV
回到顶部